Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T15:43:12.161Z Has data issue: false hasContentIssue false

Hybrid dysgenesis in Drosophila melanogaster: the relationship between the PM and IR interaction systems

Published online by Cambridge University Press:  14 April 2009

Margaret G. Kidwell
Affiliation:
Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two systems of hybrid dysgenesis, the PM system and the IR system, are characterized by two different specific types of non-reciprocal hybrid sterility referred to, respectively, as GD and SF sterility. In order to determine the relationship between these two systems, strains representative of the four single-system interactive types were crossed in almost all possible combinations and tested for both types of sterility. The results suggest that the two systems are at least partially independent of one another. There are several examples of single strains that contribute the maternal component for interaction in the PM system and contribute the paternal component in the IR system. Using parents with the potential for the two types of interaction and. appropriate temperature manipulation, both GD and SF sterility can be manifested in the same hybrid females. In other crosses, a single type of sterility is observed, or none at all, according to the dual designation of the parental strains. The evidence from a number of additional crosses suggests that most strains of this species have the potential for both types of interaction to varying degrees when mated in appropriate combinations. Some theoretical and practical implications of these results are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

References

REFERENCES

Bucheton, A., Lavige, J.-M., Picard, G. & L'Héritier, P. (1976). Non-mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36, 305314.CrossRefGoogle ScholarPubMed
Bucheton, A. & Picard, G. (1978). Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of reactivity levels. Heredity 40, 207223.CrossRefGoogle Scholar
Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance. Genetical Research (in the press).CrossRefGoogle Scholar
Engels, W. R. & Preston, C. R. (1979). Hybrid dysgenesia in Drosophila melanogaster: the biology of female sterility. Genetics (in the press).CrossRefGoogle Scholar
Fincham, J. R. S. & Sastry, G. R. F. (1974). Controlling elements in maize. Annual Review Genetics 8, 1550.CrossRefGoogle ScholarPubMed
Kearsey, M. J., Williams, W. R., Allen, P. & Coulter, F. (1977). Polymorphism for chromosomes capable of inducing female sterility in Drosophila. Heredity 38, 109115.CrossRefGoogle Scholar
Kidwell, M. G. & Kidwell, J. F. (1975). Cytoplasm–chromosome interactions in Drosophila melanogaster. Nature 253, 755756.Google Scholar
Kidwell, M. G. & Kidwell, J. F. (1976). Selection for male recombination in Drosophila melanogaster. Genetics 84, 333351.CrossRefGoogle ScholarPubMed
Kidwell, M. G. & Novy, J. B. (1979). Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonadal dysgenesis in the PM system. Genetics (in the press).Google Scholar
Kidwell, M. G., Kidwell, J. F. & Ives, P. T. (1977 a). Spontaneous non-reciprocal mutation and sterility in strain crosses of Drosophila melanogaster. Mutation Research 42, 8998.CrossRefGoogle Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977 b). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.CrossRefGoogle ScholarPubMed
Matthews, K. A., Slatko, B. E., Martin, W. A. & Hiraizumi, Y. (1978). A consideration of the negative correlation between transmission ratio and recombination frequency in a male recombination system of Drosophila melanogaster. Japanese Journal of Genetics 53, 1325.Google Scholar
Peterson, P. A. (1958). The effect of temperature on the mutation rate of a mutable locus in maize. Journal of Heredity 49, 120124.CrossRefGoogle Scholar
Picard, G. (1971). Un cas de stérilité femelle chez D. melanogaster, lié à un agent transmis maternellement. Comptes Rendus de l'Académie des Science de Paris D 272, 24842487.Google Scholar
Picard, G. (1976). Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 83, 107123.CrossRefGoogle ScholarPubMed
Picard, G., Bucheton, A., Lavige, J.-M. & Pelisson, A. (1976). Répartition géographique des trois types de souches impliquées dans un phénomène de stérilité a déterminisme non mendélien chez D. melanogaster. Comptes Rendus de l'Académie des Sciences de Paris D 282, 18131816.Google Scholar
Picard, G., Lavige, J.-M., Bucheton, A. & Bregliano, J.-C. (1977). Non-mendelian female sterility in Drosophila melanogaster: physiological pattern of embryo lethality. Biologie Cellulaire 29, 8998.Google Scholar
Picard, G., Bregliano, J.-C., Bucheton, A., Lavige, J.-M., Pelisson, A. & Kidwell, M. G. (1978). Non-mendelian sterility and hybrid dysgenesis in Drosophila melanogaster. Genetical Research 32, 275287.CrossRefGoogle ScholarPubMed
Rhoades, M. M. (1941). The genetic control of mutability in maize. Cold Spring Harbour Symposium Quantitative Biology 9, 138144.Google Scholar
Schaefer, R. E., Kidwell, M. G. & Fausto-Sterling, A. (1979). Hybrid dysgenesis in Drosophila melanogaster: morphological and cytological studies of ovarian dysgenesis. Genetics (in the Press).CrossRefGoogle Scholar
Slatko, B. E. (1978). Evidence for newly induced genetic activity responsible for male recombination induction in Drosophila melanogaster. Genetics 90, 105124.Google Scholar
Sved, J. A. (1976). Hybrid dysgenesis in Drosophila melanogaster: a possible explanation in terms of spatial organization of chromosomes. Australian Journal of Biological Sciences 29, 375388.CrossRefGoogle ScholarPubMed
Thompson, J. N. Jr. & Woodruff, R. C. (1978). Mutator genes: pacemakers of evolution Nature 274, 317321.CrossRefGoogle ScholarPubMed
Yannopoulos, G. (1978). Studies on the sterility induced by the male recombination factor 31.1 MRF in Drosophila melanogaster. Genetical Research 32, 239247.CrossRefGoogle ScholarPubMed