Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 132
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Pack, Allan I. Keenan, Brendan T. Byrne, Enda M. and Gehrman, Philip R. 2017. Principles and Practice of Sleep Medicine.


    Bassi, Filippo M. Bentley, Alison R. Charmet, Gilles Ortiz, Rodomiro and Crossa, Jose 2016. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Science, Vol. 242, p. 23.


    Chesnais, J.P. Cooper, T.A. Wiggans, G.R. Sargolzaei, M. Pryce, J.E. and Miglior, F. 2016. Using genomics to enhance selection of novel traits in North American dairy cattle1,2. Journal of Dairy Science, Vol. 99, Issue. 3, p. 2413.


    Conomos, Matthew P. Reiner, Alexander P. Weir, Bruce S. and Thornton, Timothy A. 2016. Model-free Estimation of Recent Genetic Relatedness. The American Journal of Human Genetics, Vol. 98, Issue. 1, p. 127.


    Edel, C. Pimentel, E.C.G. Plieschke, L. Emmerling, R. and Götz, K.-U. 2016. Short communication: The effect of genotyping cows to improve the reliability of genomic predictions for selection candidates. Journal of Dairy Science, Vol. 99, Issue. 3, p. 1999.


    Ehsani, A. Janss, L. Pomp, D. and Sørensen, P. 2016. Decomposing genomic variance using information from GWA, GWE and eQTL analysis. Animal Genetics, Vol. 47, Issue. 2, p. 165.


    Elsen, Jean-Michel 2016. Approximated prediction of genomic selection accuracy when reference and candidate populations are related. Genetics Selection Evolution, Vol. 48, Issue. 1,


    Heckerman, David Gurdasani, Deepti Kadie, Carl Pomilla, Cristina Carstensen, Tommy Martin, Hilary Ekoru, Kenneth Nsubuga, Rebecca N. Ssenyomo, Gerald Kamali, Anatoli Kaleebu, Pontiano Widmer, Christian and Sandhu, Manjinder S. 2016. Linear mixed model for heritability estimation that explicitly addresses environmental variation. Proceedings of the National Academy of Sciences, Vol. 113, Issue. 27, p. 7377.


    Legarra, Andres 2016. Comparing estimates of genetic variance across different relationship models. Theoretical Population Biology, Vol. 107, p. 26.


    Martini, Johannes W. R. Wimmer, Valentin Erbe, Malena and Simianer, Henner 2016. Epistasis and covariance: how gene interaction translates into genomic relationship. Theoretical and Applied Genetics, Vol. 129, Issue. 5, p. 963.


    McGaughran, Angela Rödelsperger, Christian Grimm, Dominik G. Meyer, Jan M. Moreno, Eduardo Morgan, Katy Leaver, Mark Serobyan, Vahan Rakitsch, Barbara Borgwardt, Karsten M. and Sommer, Ralf J. 2016. Genomic Profiles of Diversification and Genotype–Phenotype Association in Island Nematode Lineages. Molecular Biology and Evolution, p. msw093.


    Michel, Sebastian Ametz, Christian Gungor, Huseyin Epure, Doru Grausgruber, Heinrich Löschenberger, Franziska and Buerstmayr, Hermann 2016. Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theoretical and Applied Genetics, Vol. 129, Issue. 6, p. 1179.


    Nazarian, Alireza and Gezan, Salvador Alejandro 2016. GenoMatrix: A Software Package for Pedigree-Based and Genomic Prediction Analyses on Complex Traits. Journal of Heredity, Vol. 107, Issue. 4, p. 372.


    Nazarian, Alireza and Gezan, Salvador A. 2016. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits. Journal of Heredity, Vol. 107, Issue. 2, p. 153.


    Parker, Clarissa C Gopalakrishnan, Shyam Carbonetto, Peter Gonzales, Natalia M Leung, Emily Park, Yeonhee J Aryee, Emmanuel Davis, Joe Blizard, David A Ackert-Bicknell, Cheryl L Lionikas, Arimantas Pritchard, Jonathan K and Palmer, Abraham A 2016. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nature Genetics, Vol. 48, Issue. 8, p. 919.


    Rakitsch, Barbara and Stegle, Oliver 2016. Modelling local gene networks increases power to detect trans-acting genetic effects on gene expression. Genome Biology, Vol. 17, Issue. 1,


    Su, G. Ma, P. Nielsen, U. S. Aamand, G. P. Wiggans, G. Guldbrandtsen, B. and Lund, M. S. 2016. Sharing reference data and including cows in the reference population improve genomic predictions in Danish Jersey. animal, Vol. 10, Issue. 06, p. 1067.


    Vallejo, Roger L. Leeds, Timothy D. Fragomeni, Breno O. Gao, Guangtu Hernandez, Alvaro G. Misztal, Ignacy Welch, Timothy J. Wiens, Gregory D. and Palti, Yniv 2016. Evaluation of Genome-Enabled Selection for Bacterial Cold Water Disease Resistance Using Progeny Performance Data in Rainbow Trout: Insights on Genotyping Methods and Genomic Prediction Models. Frontiers in Genetics, Vol. 7,


    Brard, S. and Ricard, A. 2015. Is the use of formulae a reliable way to predict the accuracy of genomic selection?. Journal of Animal Breeding and Genetics, Vol. 132, Issue. 3, p. 207.


    Burstin, Judith Salloignon, Pauline Chabert-Martinello, Marianne Magnin-Robert, Jean-Bernard Siol, Mathieu Jacquin, Françoise Chauveau, Aurélie Pont, Caroline Aubert, Grégoire Delaitre, Catherine Truntzer, Caroline and Duc, Gérard 2015. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics, Vol. 16, Issue. 1, p. 105.


    ×

Increased accuracy of artificial selection by using the realized relationship matrix

  • B. J. HAYES (a1), P. M. VISSCHER (a2) and M. E. GODDARD (a1) (a3)
  • DOI: http://dx.doi.org/10.1017/S0016672308009981
  • Published online: 01 February 2009
Abstract
Summary

Dense marker genotypes allow the construction of the realized relationship matrix between individuals, with elements the realized proportion of the genome that is identical by descent (IBD) between pairs of individuals. In this paper, we demonstrate that by replacing the average relationship matrix derived from pedigree with the realized relationship matrix in best linear unbiased prediction (BLUP) of breeding values, the accuracy of the breeding values can be substantially increased, especially for individuals with no phenotype of their own. We further demonstrate that this method of predicting breeding values is exactly equivalent to the genomic selection methodology where the effects of quantitative trait loci (QTLs) contributing to variation in the trait are assumed to be normally distributed. The accuracy of breeding values predicted using the realized relationship matrix in the BLUP equations can be deterministically predicted for known family relationships, for example half sibs. The deterministic method uses the effective number of independently segregating loci controlling the phenotype that depends on the type of family relationship and the length of the genome. The accuracy of predicted breeding values depends on this number of effective loci, the family relationship and the number of phenotypic records. The deterministic prediction demonstrates that the accuracy of breeding values can approach unity if enough relatives are genotyped and phenotyped. For example, when 1000 full sibs per family were genotyped and phenotyped, and the heritability of the trait was 0·5, the reliability of predicted genomic breeding values (GEBVs) for individuals in the same full sib family without phenotypes was 0·82. These results were verified by simulation. A deterministic prediction was also derived for random mating populations, where the effective population size is the key parameter determining the effective number of independently segregating loci. If the effective population size is large, a very large number of individuals must be genotyped and phenotyped in order to accurately predict breeding values for unphenotyped individuals from the same population. If the heritability of the trait is 0·3, and Ne=1000, approximately 5750 individuals with genotypes and phenotypes are required in order to predict GEBVs of un-phenotyped individuals in the same population with an accuracy of 0·7.

Copyright
Corresponding author
*Corresponding author. Tel: +61 (0)3 9479 5439. Fax: +61 (0)3 9479 3113. e-mail: ben.hayes@dpi.vic.gov.au
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. R. Abecasis , S. S. Cherny , W. O. Cookson & L. R. Cardon (2002). Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97101.

A. M. Dunning , F. Durocher , C. S. Healey , M. D. Teare , S. E. McBride , F. Carlomagno , C. F. Xu , E. Dawson , S. Rhodes , S. Ueda , E. Lai , R. N. Luben , E. J. Van Rensburg , A. Mannermaa , V. Kataja , G. Rennart , I. Dunham , I. Purvis , D. Easton & B. A. J. Ponder (2000). The extent of linkage disequilibrium in four populations with distinct demographic histories. American Journal of Human Genetics 67, 15441554.

I. R. Franklin (1977). The distribution of the proportion of the genome which is homozygous by descent in inbred individuals. Theoretical Population Biology 11, 6080.

S. W. Guo (1996). Variation in genetic identity among relatives. Human Heredity 46, 6170.

B. J. Hayes & M. E. Goddard (2001). The distribution of the effects of genes affecting quantitative traits in livestock. Genetics Selection Evolution 33, 209229.

B. J. Hayes , P. M. Visscher , H. McPartlan & M. E. Goddard (2003). A novel multi-locus measure of linkage disequilibrium and it use to estimate past effective population size. Genome Research 13, 635.

B. J. Hayes , A. C. Chamberlain , H. McPartlan , I. McLeod , L. Sethuraman & M. E. Goddard (2007). Accuracy of marker assisted selection with single markers and marker haplotypes in cattle. Genetics Research 89, 215220.

W. G. Hill (1993). Variation in genetic identity within kinships. Heredity 71, 652653.

W. G. Hill , M. E. Goddard & P. M. Visscher (2008). Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics 4(2), e1000008. doi:10.1371/journal.pgen.1000008.

T. H. Meuwissen & M. E. Goddard (2004). Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genetics Selection Evolution 36(3), 261279.

M. Rasmusson (1993). Variation in genetic identity within kinships. Heredity 70, 266268.

D. E. Reich , M. Cargill , S. Bolk , J. Ireland , P. C. Sabeti , D. J. Richter , T. Lavery , R. Kouyoumjlan , S. F. Farhadian , R. Ward & E. S. Lander (2001). Linkage disequilibrium in the human genome. Nature 411, 199204.

S. Sanna , A. U. Jackson , R. Nagaraja , C. J. Willer , W. M. Chen , L. L. Bonnycastle , H. Shen , N. Timpson , G. Lettre , G. Usala , P. S. Chines , H. M. Stringham , L. J. Scott , M. Dei , S. Lai , G. Albai , L. Crisponi , S. Naitza , K. F. Doheny , E. W. Pugh , Y. Ben-Shlomo , S. Ebrahim , D. A. Lawlor , R. N. Bergman , R. M. Watanabe , M. Uda , J. Tuomilehto , J. Coresh , J. N. Hirschhorn , A. R. Shuldiner , D. Schlessinger , F. S. Collins , G. Davey Smith , E. Boerwinkle , A. Cao , M. Boehnke , G. R. Abecasis & K. L. Mohlke (2008). Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genetics 40, 198203.

P. Stam (1980). The distribution of the fraction of the genome identical by descent in finite random mating populations. Genetical Research 35, 131155.

A. Tenesa , P. Navarro , B. J. Hayes , D. L. Duffy , G. M. Clarke , M. E. Goddard & P. M. Visscher (2007). Recent human effective population size estimated from linkage disequilibrium. Genome Research 17, 520526.

The International HapMap Consortium (2007). A second generation human haplotype map of over 3·.1 million SNPs. Nature 449(7164), 851861.

P. M. Visscher (2008). Sizing up human height variation. Nature Genetics 40, 489490.

P. M. Visscher , S. E. Medland , M. A. Ferreira , K. I. Morley , G. Zhu , B. K. Cornes , G. W. Montgomery & N. G. Martin (2006). Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genetics 2, e41.

N. R. Wray , M. E. Goddard & P. M. Visscher (2007). Prediction of individual genetic risk to disease from genome-wide association studies. Genome Research 17, 15201528.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×