Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-10T21:55:39.572Z Has data issue: false hasContentIssue false

The interpretation of complementation data

Published online by Cambridge University Press:  14 April 2009

Oliver J. Gillie
Affiliation:
Institute of Animal Genetics, Edinburgh, 9

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evidence for complementation maps being linear is examined by analysis of all known complementation maps in micro-organisms, and by constructing maps from mutants randomly sampled from amongst those at the leu-2 locus in Neurospora with known complementing properties. Eleven loci out of thirty-five examined in six micro-organisms have non-linear complementation maps. Two linear maps, his-3 and ad-3b (having 25 and 35 complementation groups respectively) have a sufficiently large number of groups for it to be likely that if they do not remain linear on testing further mutants, they will at least have a lower frequency of mutants exceptional to linearity than known non-linear loci. On the basis of maps made from mutants sampled from the leu-2 data, it seemed unlikely that non-linearity would be observed with less than 24 complementing mutants or 13 complementing groups in the sample, and therefore many loci with linear maps are likely to be found to have non-linear maps when larger samples of mutants are tested. This conclusion is important in attempting to correlate the structure of complementation maps with recombination maps and with functional data concerning enzyme activities.

The relationship between the number of complementing mutants, number of groups and number of units at the leu-2 locus is described and a statistical method of determining the total number of groups at a locus is discussed.

Known complex complementation maps have been replotted according to consistent rules, and are illustrated in a shorthand form. The form of the complex maps is discussed in relation to current hypotheses concerning the interpretation of complementation maps. In particular an interpretation of the ‘circular’ leu-2 map is given in terms of the theory of complementation proposed by Crick & Orgel (1964).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Ahmad, M. & Catcheside, D. G. (1960). Physiological diversity amongst tryptophan mutants of Neurospora craasa. Heredity, Lond. 15, 5564.CrossRefGoogle Scholar
Ahmad, M., Khalil, M. D., Khan, N. A. & Mozmadar, A. (1964). Structural and functional complexity at the tryptophan-1 in Neurospora crassa. Genetics, 49, 925933.CrossRefGoogle ScholarPubMed
Ahmed, A., Case, M. E. & Giles, N. H. (1964). The nature of complementation among mutants in the histidine-3 region of Neurospora crassa. Brookhaven Symp. Biol. 17, 5365.Google ScholarPubMed
Bernstein, H. & Miller, A. (1961). Complementation studies with isoleucine valine mutants of Neurospora crassa. Genetics, 46, 10391052.CrossRefGoogle ScholarPubMed
Bernstein, H., Edgar, R. S. & Denhardt, G. H. (1965). Intragenic complementation among temperature sensitive mutants of bacteriophage T4D. Genetics, 51, 9871002.CrossRefGoogle ScholarPubMed
Brenner, S. (1959). In Symposium on Biochemistry of Human Genetics (Wolsten-holme, G. E. W. & O'Connor, C. M., eds.), p. 304. London: Churchill.Google Scholar
Carlson, E. A. (1961). Limitations of geometrical models for complementation mapping of allelic series. Nature, Lond., 191, 788790.CrossRefGoogle Scholar
Case, M. E. & Giles, N. H. (1960). Comparative complementation and genetic maps at the pan-2 locus in Neurospora crassa. Proc. natn. Acad. Sci. U.S.A. 46, 659676.CrossRefGoogle ScholarPubMed
Catcheside, D. G. (1960). Complementation among histidine mutants of Neurospora crassa. Proc. R. Soc. B, 153, 179194.Google ScholarPubMed
Catcheside, D. G. (1964). Interallelic complementation. Brookhaven Symp. Biol. 17, 114.Google ScholarPubMed
Catcheside, D. G. (1965). Multiple enzyme functions of a gene in Neurospora crassa. Biochem. biophys. Res. Commun. 18, 648651.CrossRefGoogle Scholar
Champe, S. P. (Personal communication.)Google Scholar
Coddington, A. & Fincham, J. R. S. (1965). Proof of hybrid enzyme formation in a case of inter-allelic complementation in Neurospora crassa. J. molec. Biol. 12, 152161.CrossRefGoogle Scholar
Costello, W. P. & Bevan, E. A. (1964). Complementation between ad 5/7 alleles in yeast. Genetics, 50, 12191230.CrossRefGoogle ScholarPubMed
Crick, F. H. C. & Orgel, L. E. (1964). The theory of inter-allelic complementation. J. molec. Biol. 8, 161165.CrossRefGoogle ScholarPubMed
Dorfman, B. (1964). Allelic complementation at the ad 5/7 locus in yeast. Genetics, 50, 12311243.CrossRefGoogle ScholarPubMed
Fincham, J. R. S. (1960). Genetically controlled differences in enzyme activity. Adv. Enzymol. 22, 143.Google ScholarPubMed
Fincham, J. R. S. & Coddington, A. (1963). The mechanism of complementation between am mutants of Neurospora crassa. Cold Spring Harb. Symp. quant. Biol. XXVIII, 517527.CrossRefGoogle Scholar
Giles, N. H. (1963). Genetic fine structure in relation to function in Neurospora. Genetics Today. Proc. XI Int. Congr. Genet. 2, 1730.Google Scholar
Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40, 1953.CrossRefGoogle Scholar
Gross, S. R. (1962). On the mechanism of complementation at the leu-2 locus of Neurospora. Proc. natn. Acad. Sci. U.S.A. 48, 922930.CrossRefGoogle ScholarPubMed
Gross, S. R. & Webster, R. E. (1963). Some aspects of interallelic complementation involving leucine biosynthetic enzymes of Neurospora. Cold Spring Harb. Symp. quant. Biol. XXVIII, 543547.CrossRefGoogle Scholar
Gutz, H. (1963 a). Untersuchungen zur Feinstruktur der Gene ad7 und ad6 von Schizo-saccharomyces pombe find. Habilitationschrift. Technischen Universität Berlin.Google Scholar
Gutz, H. (1963 b). Abstract. Studies on the genetic fine structure of the ad7 and ad6 loci of Schizosaccharomyces pombe. Proc. XI Int. Congr. Genet. 1, 7.Google Scholar
Hartman, P. E., Hartman, Z. & Serman, D. (1960). Complementation mapping by abortive transduction of histidine requiring Salmonella mutants. J. gen. Microbiol. 22, 354368.CrossRefGoogle ScholarPubMed
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genet. Res. 5, 282304.CrossRefGoogle Scholar
Ishikawa, T. (1962). Genetic studies of ad-8 mutants in Neurospora crassa. II. Interallelic complementation of the ad-8 locus. Genetics, 47, 17551770.CrossRefGoogle ScholarPubMed
Jessop, A. P. & Catcheside, D. G. (1965). Interallelic recombination at the his-1 locus in Neurospora crassa and its genetic control. Heredity, Lond., 20, 237256.CrossRefGoogle Scholar
Kapuler, A. M. & Bernstein, H. (1963). A molecular model for an enzyme based on a correlation between the genetic and complementation maps of the locus specifying the enzyme. J. molec. Biol. 6, 443451.CrossRefGoogle ScholarPubMed
Leupold, U. (1965). (Personal communication.)Google Scholar
Leupold, U. (1961). Intragene rekombination und allele komplementierung. Arch. Julius Klaus-Stift Vererb-Forsch. 36, 89117.Google Scholar
Leupold, U. & Gutz, H. (1964). Genetic fine structure in Schizosaccharomyces. Proc. XI Int. Congr. Genet. 2, 3135.Google Scholar
Loper, J. C., Grabnar, M., Stahl, R. C., Hartman, Z. & Hartman, P. E. (1964). Genes and proteins involved in histidine biosynthesis in Salmonella. Brookhaven Nat. Lab. Symp. 17, 1552.Google ScholarPubMed
Manney, T. R. (1964). Tryptophan synthetase mutants of yeast: Action of a super-suppressor in relation to allelic mapping and complementation. Thesis, University of California.Google Scholar
Megnet, R. & Giles, N. H. (1965). Allelic complementation at the adenylosuccinase locus in Schizosaccharomyces pombe. Genetics, 50, 967971.CrossRefGoogle Scholar
Monod, H., Wyman, J. & Changeux, J. (1965). On the nature of allosteric transitions: A plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Murray, N. E. (1960). Complementation and recombination between me-2 alleles in Neurospora crassa. Heredity, Lond., 15, 207217.CrossRefGoogle Scholar
Rice, J. (1963). The biochemical genetics of Neurospora crassa: Complementation at the arg-10 locus. Ph.D. Thesis, University of Leicester.Google Scholar
Schlesinger, M. J., Torriani, A. & Levinthal, C. (1963). In vitro formation of enzymatically active hybrid proteins from E. coli alkaline phosphatase CRM's. Cold Spring Harb. Symp. quant. Biol. XXVIII. 539542.CrossRefGoogle Scholar
de Serres, F. J. (1963). Studies with purple adenine mutants in Neurospora crassa. V. Evidence for allelic complementation among ad-3b mutants. Genetics 48, 351360.CrossRefGoogle ScholarPubMed
de Serres, F. J. (1964). Mutagenesis and chromosome structure. J. cell. comp. Physiol. 64, Sup. 1, 3342.CrossRefGoogle Scholar
de Serres, F. J. (1965). (Personal communication.)Google Scholar
Suyama, Y. & Bonner, D. M. (1962). Abstract: Complementation, mutation and enzyme alteration in the tryptophan synthetase system of Neurospora. Genetics, 47, 989.Google Scholar
Woodward, V. W. (1962). Complementation and recombination among pyr-3 hetero-alleles of Neurospora crassa. Proc. natn. Acad. Sci. U.S.A. 48, 348356.CrossRefGoogle ScholarPubMed
Woodward, D. O. (1958). Complementation at the ad-4t locus in Neurospora crassa. Proc. natn. Acad. Sci. U.S.A. 44, 12371244.CrossRefGoogle ScholarPubMed
Woods, R. A. (1963). Genetic variation in yeast. D.Phil. Thesis, Oxford.Google Scholar
Woods, R. A. & Bevan, E. A. (1966). Interallelic complementation at the ad-2 locus of Saccharomyces cerevisiae. Heredity, Lond., 21, 121130.CrossRefGoogle ScholarPubMed