Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T08:02:01.428Z Has data issue: false hasContentIssue false

Kinetics of F-curing by acridine orange in relation to the number of F-particles in Escherichia coli

Published online by Cambridge University Press:  14 April 2009

A. H. Stouthamer
Affiliation:
Laboratory for Microbiology, State University, Utrecht, The Netherlands
P. G. de Haan
Affiliation:
Laboratory for Microbiology, State University, Utrecht, The Netherlands
E. J. Bulten
Affiliation:
Laboratory for Microbiology, State University, Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Acridine orange does not interfere with the distribution of the F-particles among the daughter cells but inhibits the multiplication of the episome.

In growing cells the generation time of the episome in the presence of acridine orange is longer than the generation time of the cell.

This lowers the number of episomes per cell to less than two copies at cell division.

F-particles rapidly multiply after transfer until a relatively small fixed number (3–4) is reached.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1963

References

REFERENCES

Apelgot, S. & Latarjet, R. (1962). Marquage d'un acide déoxyribonucléique bacterien par le radiophosphore, le radiocarbone et le tritium: Comparaison des effets létaux. Biochim. biophys. Acta, 55, 4055.Google Scholar
Cavalli, L. L., Lederberg, J. & Lederberg, E. M. (1953). An infective factor controlling sex compatibility in Bacterium coli. J. gen. Microbiol. 8, 89103.Google Scholar
Fiske, C. H. & Subbarow, J. (1925). The colorimetric determination of phosphorus. J. biol. Chem. 66, 375400.CrossRefGoogle Scholar
Fuerst, L. R. & Stent, G. S. (1956). Inactivation of bacteria by decay of inocrporated radio-active phosphorus. J. gen. Physiol. 40, 7390.CrossRefGoogle Scholar
Haan, P. G. de & Stouthamer, A. H. (1963). F-prime transfer and multiplication of sexduced cells. Genet. Res., 4, 3041.CrossRefGoogle Scholar
Hayes, W. (1953 a). Observations on a transmissable agent determining sexual differentiation in Boot. coli. J. gen. Microbiol. 8, 7288.Google Scholar
Hayes, W. (1953 b). The mechanism of genetic recombination in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 18, 7593.CrossRefGoogle ScholarPubMed
Hershey, A. D., Kamen, A. D., Kennedy, J. D. and Gest, H. (1951). The mortality of bacteriophage containing assimilated radiophosphorus. J. gen. Phsyiol. 34, 305319.Google Scholar
Hirota, J. & Iijima, T. (1957). Acriflavine as an effective agent for eliminating. F-factor in Escherichia coli K 12. Nature, Lond., 180, 655656.CrossRefGoogle ScholarPubMed
Hirota, J. (1960). The effect of acridine dyes on mating type factor in Escherichia coli. Proc. nat. Acad. Sci., Wash., 46, 5764.CrossRefGoogle ScholarPubMed
Hirota, J. & Sneath, P. H. A. (1961). Jap. J. Genet. 36, 307.CrossRefGoogle Scholar
Jacob, F., Schaeffer, P. & Wollman, E. L. (1960). Episomic elements in bacteria. In: Microbial Genetics, pp. 6791. Cambridge University Press.Google Scholar
Jacob, F. & Wollman, E. L. (1956). Sur les processes de conjugaisonetderecombinaisonchez Escherichia coli. I. L'induction par conjugaison ou induction zygotique. Ann. Inst. Pasteur, 91, 486510.Google Scholar
Jacob, F. & Wollman, E. L. (1958). Les épisomes elements génétiques ajoutés. C. R. Acad. Sci., Pari., 247, 154156.Google Scholar
Lavallé, R. & Jacob, F. (1961). Sur la sensibilité des épisomes sexuel et colicinogène d'escherichia coli K 12 à la désintégration du radiophosphore. C. R. Acad. Sci., Pari., 252, 16781680.Google Scholar
Lederberg, J. (1948). Detection of fermentative variants with tetrazolium. J. Bact. 56, 695.CrossRefGoogle ScholarPubMed
Lederberg, J., Cavalli, L. L. & Lederberg, E. M. (1952). Sex compatibility in Escherichia coli. Genetics, 37, 720730.CrossRefGoogle ScholarPubMed
Röesch, A. (1962). De invloed van genetische factoren op de stralingsgevoeligheid van Escherichia coli stam B. Ph.D. Thesis, University of Leiden, The Netherlands.Google Scholar
Silver, S. & Ozeki, H. (1962). Transfer of deoxyribonucleic acid accompanying the transmission of colicinogenic properties by cell mating. Nature, Lond., 195, 873874.CrossRefGoogle ScholarPubMed
Stent, G. S. & Fuerst, C. R. (1955). Inactivation of bacteriophages by decay of incorporated radioactive phosphorus. J. gen. Physiol. 38, 441458.CrossRefGoogle ScholarPubMed
Tatum, E. L. (1945). X-ray induced mutant strains of Escherichia coli. Proc. nat. Acad. Sci., Wash., 31, 215219.CrossRefGoogle ScholarPubMed
Winkler, K. C. & Haan, P. G. de (1948). On the action of sulfanilamide. XII. A set of non-competitive sulfanilamide antagonists for Escherichia coli. Arch. Biochem. 18, 97107.Google Scholar