Skip to main content
×
Home
    • Aa
    • Aa

LASSO with cross-validation for genomic selection

  • M. GRAZIANO USAI (a1), MIKE E. GODDARD (a2) (a3) and BEN J. HAYES (a3)
Abstract
Summary

We used a least absolute shrinkage and selection operator (LASSO) approach to estimate marker effects for genomic selection. The least angle regression (LARS) algorithm and cross-validation were used to define the best subset of markers to include in the model. The LASSO–LARS approach was tested on two data sets: a simulated data set with 5865 individuals and 6000 Single Nucleotide Polymorphisms (SNPs); and a mouse data set with 1885 individuals genotyped for 10 656 SNPs and phenotyped for a number of quantitative traits. In the simulated data, three approaches were used to split the reference population into training and validation subsets for cross-validation: random splitting across the whole population; random sampling of validation set from the last generation only, either within or across families. The highest accuracy was obtained by random splitting across the whole population. The accuracy of genomic estimated breeding values (GEBVs) in the candidate population obtained by LASSO–LARS was 0·89 with 156 explanatory SNPs. This value was higher than those obtained by Best Linear Unbiased Prediction (BLUP) and a Bayesian method (BayesA), which were 0·75 and 0·84, respectively. In the mouse data, 1600 individuals were randomly allocated to the reference population. The GEBVs for the remaining 285 individuals estimated by LASSO–LARS were more accurate than those obtained by BLUP and BayesA for weight at six weeks and slightly lower for growth rate and body length. It was concluded that LASSO–LARS approach is a good alternative method to estimate marker effects for genomic selection, particularly when the cost of genotyping can be reduced by using a limited subset of markers.

Copyright
Corresponding author
*Corresponding author. Settore Genetica e Biotecnologie, AGRIS-Sardegna, Loc. Bonassai, Km 18·6 S. S. Sassari-Fertilia, 07040, Olmedo (SS), Italy. Tel: +39 079387318. Fax: +39-079389450. e-mail: graziano.usai@gmail.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Yi & S. Xu (2008). Bayesian LASSO for quantitative trait loci mapping. Genetics 179, 1045–55.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 51 *
Loading metrics...

Abstract views

Total abstract views: 242 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th May 2017. This data will be updated every 24 hours.