Skip to main content Accessibility help
×
Home

Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice

  • JUN LI (a1), RICHARD REYNOLDS (a1), DANIEL POMP (a2), DAVID B. ALLISON (a1) (a3) and NENGJUN YI (a1) (a3)...

Summary

We proposed hierarchical Poisson and binomial models for mapping multiple interacting quantitative trait loci (QTLs) for count traits in experimental crosses. We applied our methods to two counted reproductive traits, live fetuses (LF) and dead fetuses (DF) at 17 days gestation, in an F2 female mouse population. We treated observed number of corpora lutea (ovulation rate) as the baseline and the total trials in our Poisson and binomial models, respectively. We detected more than 10 QTLs for LF and DF, most having epistatic and pleiotropic effects. The epistatic effects were larger, involved more QTLs, and explained a larger proportion of phenotypic variance than the main effects. Our analyses revealed a complex network of multiple interacting QTLs for the reproductive traits, and increase our understanding of the genetic architecture of reproductive characters. The proposed statistical models and methods provide valuable tools for detecting multiple interacting QTLs for complex count phenotypes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA. Email: nyi@ms.soph.uab.edu

References

Hide All
Avalos, E. & Smith, C. (1987). Genetic improvement of litter size in pigs. Animal Production 44, 153164.
Bennett, G. L. & Leymaster, K. A. (1989). Integration of ovulation rate, potential embryonic viability and uterine capacity into a model of litter size in swine. Journal of Animal Science 67, 12301241.
Carlborg, Ö. & Haley, C. S. (2004). Epistasis: too often neglected in complex trait studies? Nature Reviews Genetics 5, 618625.
Casella, G. & Berger, R. L. (2001). Statistical Inference, 2nd edn. Belmont, CA: Duxbury Press.
Cassady, J. P., Johnson, R. K., Pomp, D., Rohrer, G. A., Van Vleck, L. D., Spiegel, E. K. & Gilson, K. M. (2001). Identification of quantitative trait loci affecting reproduction in pigs. Journal of Animal Science 79, 623633.
Cheverund, J. M. & Routman, E. J. (1995). Epistasis and its contribution to genetic variance components. Genetics 139, 14551461.
Doebley, J. & Stec, A. (1991). Genetic analysis of the morphological differences between maize and teosinte. Genetics 129, 285295.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003). Bayesian Data Analysis, 2nd edn. London: Chapman & Hall.
Gelman, A., Jakulin, A., Pittau, M. G. & Su, Y. S. (2008). A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics 2, 13601383.
Haley, C. S. & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.
Hansen, L. B., Freeman, A. E. & Berger, P. J. (1983). Yield and fertility relationships in dairy cattle. Journal of Dairy Science 66, 293305.
Holl, J. W., Cassady, J. P., Pomp, D. & Johnson, R. K. (2004). A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. Journal of Animal Science 82, 34213429.
King, A. H., Jiang, Z., Gibson, J. P., Haley, C. S. & Archibald, A. L. (2003). Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biology of Reproduction 68, 21722179.
Kirkpatrick, B. W., Mengelt, A., Schulman, N. & Martin, I. C. (1998). Identification of quantitative trait loci for prolificacy and growth in mice. Mammalian Genome 9, 97–102.
Kopp, A., Graze, R. M., Xu, S., Carroll, S. B. & Nuzhdin, S. V. (2003). Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster. Genetics 163, 771787.
Lamberson, W. R. (1990). Genetic parameters for reproductive traits. In Genetics of the Pig (North Central Regional Research Project NC-103 Report) (ed. Young, L. D.), pp. 7076. Lincoln: USMARC, Clay Center, NE, and University of Nebraska.
Lynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland, CA: Sinauer Associates.
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F., McCarroll, S. A. & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature 461, 747753.
Moore, J. H. (2005). A global view of epistasis. Nature Genetics 37, 1314.
Price, A. H. & Courtois, B. (1999). Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regulation 29, 123133.
Rathje, T. A., Rohrer, G. A. & Johnson, R. K. (1997). Evidence for quantitative trait loci affecting ovulation rate in pigs. Journal of Animal Science 75, 14861494.
Ren, D. R., Ren, J., Xing, Y. Y., Guo, Y. M., Wu, Y. B., Yang, G. C., Mao, H. R. & Huang, L.-S. (2009). A genome scan for quantitative trait loci affecting male reproductive traits in a White Duroc×Chinese Erhualian resource population. Journal of Animal Science 87, 1723.
Rocha, J. L., Eisen, E. J., Van Vleck, L. D. & Pomp, D. (2004a). A large-sample QTL study in mice: I. Growth. Mammalian Genome 15, 8399.
Rocha, J. L., Eisen, E. J., Siewerdt, F., Van Vleck, L. D. & Pomp, D. (2004b). A large-sample QTL study in mice: III. Reproduction. Mammalian Genome 15, 878886.
Rohrer, G. A., Ford, J. J., Wise, T. H., Vallet, J. L. & Christenson, R. K. (1999). Identification of quantitative trait loci affecting female reproduction traits in a multigeneration Meishan–White composite swine population. Journal of Animal Science 77, 13851391.
Sato, S., Atsuji, K., Saito, N., Okitsu, M., Sato, S., Komatsuda, A., Mitsuhashi, T., Nirasawa, K., Hayashi, T., Sugimoto, Y. & Kobayashi, E. (2006). Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan×Duroc F2 resource population. Journal of Animal Science 84, 28952901.
Spearow, J. L., Nutson, P. A., Mailliard, W. S., Porter, M. & Barkley, M. (1999). Mapping genes that control hormone-induced ovulation rate in mice. Biology of Reproduction 61, 857872.
Sugiyama, F., Churchill, G. A., Higgins, D. C., Johns, C., Makaritsis, K. P., Gavras, H. & Paigen, B. (2001). Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 71, 7077.
Valdar, W., Solberg, L. C., Gauguier, D., Cookson, W. O., Rawlins, J. N. P., Mott, R. & Flint, J. (2006). Genetic and environmental effects on complex traits in mice. Genetics 174, 959984.
Wade, M. J. (2001). Epistasis, complex traits, and mapping genes. Genetica 112–113, 5969.
Wilkie, P. J., Paszek, A. A., Beattie, C. W., Alexander, L. J., Wheeler, M. B. & Schook, L. B. (1999). A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea. Mammalian Genome 10, 573578.
Xu, S. (2007). An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63, 513521.
Yandell, B. S., Mehta, T., Banerjee, S., Shriner, D., Venkataraman, R., Moon, J. Y., Neely, W. W., Wu, H., von Smith, R. & Yi, N. (2007). R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics 23, 641643.
Yi, N., Diamont, A., Chiu, S., Kim, K., Allison, D. B., Fisler, J. S. & Warden, C. H. (2004a). Characterization of epistasis influencing complex spontaneous obesity in the B5B model. Genetics 167, 399409.
Yi, N., Chiu, S., Allison, D. B., Fisler, J. S. & Warden, C. H. (2004b). Epistatic interaction between two nonstructural loci on chromosomes 7 and 3 influences hepatic lipase activity in B5B mice. Journal of Lipid Research 45, 20632070.
Yi, N., Zinniel, D. K., Kim, K., Eisen, E. J., Bartolucci, A., Allison, D. B. & Pomp, D. (2006). Bayesian analysis of multiple epistatic QTL models for body weight and body composition in mice. Genetical Research 87, 4560.
Yi, N. & Xu, S. (2008). Bayesian LASSO for quantitative trait loci mapping. Genetics 179, 10451055.
Yi, N. & Banerjee, S. (2009). Hierarchical generalized linear models for multiple quantitative trait locus mapping. Genetics 181, 11011113.
Yu, S. B., Li, J. X., Xu, C. G., Tan, Y. F., Gao, Y. J., Li, X. H., Zhang, Q. & Saghai Maroof, M. A. (1997). Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the USA 94, 92269231.

Mapping interacting QTL for count phenotypes using hierarchical Poisson and binomial models: an application to reproductive traits in mice

  • JUN LI (a1), RICHARD REYNOLDS (a1), DANIEL POMP (a2), DAVID B. ALLISON (a1) (a3) and NENGJUN YI (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed