Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-13T08:27:20.676Z Has data issue: false hasContentIssue false

Phenotypic properties of R factors of Pseudomonas aeruginosa: R factors readily transferable between Pseudomonas and the Enterobacteriaceae

Published online by Cambridge University Press:  14 April 2009

P. M. Chandler
Affiliation:
Department of Genetics, Monash University, Clayton, Victoria, 3168, Australia
V. Krishnapillai
Affiliation:
Department of Genetics, Monash University, Clayton, Victoria, 3168, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

R factors have been demonstrated in multiply drug resistant strains of enterobacteria and Pseudomonas aeruginosa in a Birmingham hospital (Lowbury et al. 1969; Ingram, Richmond & Sykes, 1973). A comparative genetic analysis of these R factors has been initiated on the basis of a variety of phenotypic characteristics. This paper describes the properties of R factors derived from strains which could transfer multiple drug resistance to the recipient species P. aeruginosa, Escherichia coli, Shigella flexneri and Salmonella typhimurium. Two types of R factor could be recognized phenotypically. The single group 1 R factor, R18–1 which is probably the same as RPl-1 (Ingram et al. 1972) was different to the group 2 R factors in many respects, including host range, R factor-specific phage plating, cellular location, drug resistance pattern, and stability. The group 2 R factors were found to be very similar to RPl (Grinsted et al. 1972) and R1822 (Olsen & Shipley, 1973) with respect to their wide host range, plating of a sex specific phage, extrachromosomal location, and drug resistance pattern. Compatibility was shown between the group 1 R factor and a group 2 R factor, providing additional evidence for significant genetic differences.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Ames, B. N., Gurney, E. G., Miller, J. A. & Bartsch, H. (1972). Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-actylaminofluorene and other aromatic amine carcinogens. Proceedings of the National Academy of Science, U.S.A. 69, 31283132.CrossRefGoogle Scholar
Appleyard, R. K. (1954). Segregation, of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12. Genetics 39, 440452.CrossRefGoogle Scholar
Black, W. A. & Girdwood, R. W. A. (1969). Carbenicillin resistance in Pseudomonas aeruginosa. British Medical Journal iv, 234.CrossRefGoogle Scholar
Bridges, B. A., Mottershead, R. P., Rothwell, M. A. & Green, M. H. L. (1972). Chemical-Biological Interactions 5, 7784.CrossRefGoogle Scholar
Bryan, L. E., Elzen, H. M. Van Den & Teng, Tseng Jui (1972). Transferable drug resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1, 2229.CrossRefGoogle ScholarPubMed
Chandler, P. M. & Krishnapillai, V. (1974). Isolation and properties of recombination deficient mutants of Pseudomonas aeruginosa. Mutation Research 23, 1523.CrossRefGoogle ScholarPubMed
Clark, A. J. (1971). Towards a metabolic interpretation of genetic recombination of E. coli and its phages. Annual Review of Microbiology 25, 437464.CrossRefGoogle Scholar
Clowes, R. C. (1972). Molecular Structure of Bacterial Plasmids. Bacteriological Reviews 36, 361405.CrossRefGoogle ScholarPubMed
Curtis, N. A. C., Richmond, M. H. & Sykes, R. B. (1972). Periplasmic location of a & β-lactamase specified either by a plasmid or chromosomal gene in Escherichia coli. Journal of Bacteriology 112, 14331434.CrossRefGoogle ScholarPubMed
Datta, N., Hedges, R. W., Shaw, E. J., Sykes, R. B. & Richmond, M. H. (1971). Properties of an R factor from Pseudomonas aeruginosa. Journal of Bacteriology 108, 12441249.CrossRefGoogle Scholar
Davey, R. B. & Pittard, A. J. (1971). Transferable Multiple antibiotic resistance amongst Shigella strains isolated in Melbourne between 1952 and 1968. Medical Journal of Australia 1, 13671370.CrossRefGoogle ScholarPubMed
Fullbrook, P. D., Elson, S. W. & Slocombe, B. (1970). R Factor mediated β-lactamase in Pseudomonas aeruginosa. Nature (London) 226, 10541056.CrossRefGoogle ScholarPubMed
Grinsted, J., Saunders, J. R., Ingram, L. C., Sykes, R. B. & Richmond, M. H. (1972). Properties of an R factor which originated in Pseudomonas aeruginosa 1822. Journal of Bacteriology 110, 529537.CrossRefGoogle Scholar
Holloway, B. W., Krishnapillai, V. & Stanisich, V. (1971). Pseudomonas genetics. Annual Review of Genetics 5, 425446.CrossRefGoogle ScholarPubMed
Holloway, B. W. & Richmond, M. H. (1973). R factors used for genetic studies in strains of Pseudomonas aeruginosa and their origin. Genetical Research, Cambridge 21, 103105.CrossRefGoogle Scholar
Ingram, L. C., Sykes, R. B., Grinsted, J., Saunders, J. R. & Richmond, M. H. (1972). A transmissible resistance element from a strain of Pseudomonas aeruginosa containing no detectable extrachromosomal DNA. Journal of General Microbiology, 72, 269279.CrossRefGoogle ScholarPubMed
Ingram, L. C., Richmond, M. H. & Sykes, R. B. (1973). Molecular characterization of the R factors implicated in the carbenicillin resistance of a sequence of Pseudomonas aeruginosa strains isolated from burns. Antimicrobial Agents and Chemotherapy 3, 279288.CrossRefGoogle Scholar
Isaac, J. H. & Holloway, B. W. (1968). Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology 96, 17321741.CrossRefGoogle ScholarPubMed
Kawakami, Y., Mikoshiba, F., Nagasaki, S., Matsumoto, H. & Tazaki, T. (1972). Prevalence of Pseudomonas aeruginosa strains possessing R factor in a hospital. Journal of Antibiotics 25, 607609.CrossRefGoogle ScholarPubMed
Krishnapillai, V. (1971). A novel transducing phage: Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Molecular & General Genetics 114, 134143.CrossRefGoogle Scholar
Lowbury, E. J. L., Kidson, A., Lilly, H. A., Ayliffe, G. A. J. & Jones, R. J. (1969). Sensitivity of Pseudomonas aeruginosa to antibiotics: Emergence of strains highly resistant to carbenicillin. Lancet ii 448452.CrossRefGoogle Scholar
Mattes, R., Barkardt, H. J., Heumann, W. & Pühler, A. (1973). R factors from Pseudomonas aeruginosa investigated in Rhizobium lupini and Escherichia coli. Genetics 74, S175–S176.Google Scholar
Meynell, G. G. (1972). Bacterial Plasmids. London: Macmillan.Google Scholar
Novick, R. P. (1969). Extrachromosomal inheritance in bacteria. Bacteriological Reviews 33, 210263.CrossRefGoogle ScholarPubMed
Olsen, R. H. & Shipley, P. (1973). Host range and properties of the Pseudomonas aeruginosa R factor R1822. Journal of Bacteriology, 113, 772780.CrossRefGoogle ScholarPubMed
Pittard, A. J., Loutit, J. S. & Adelberg, E. A. (1963). Gene transfer by F' strains of Escherichia coli K-12. 1. Delay in initiation of chromosome transfer. Journal of Bacteriology 85, 13941401.CrossRefGoogle Scholar
Richmond, M. H. & Sykes, R. B. (1972). The chromosomal integration of a β-lactamase gene derived from the P-type R factor RP1 in Escherichia coli. Genetical Research, Cambridge 20, 231237.CrossRefGoogle ScholarPubMed
Roe, E., Jones, R. J. & Lowbury, E. J. L. (1971). Transfer of antibiotic resistance between Pseudomonas aeruginosa, Escherichia coli, and other gram-negative bacilli in burns. Lancet i, 149152.CrossRefGoogle Scholar
Stanisich, V. A. & Holloway, B. W. (1971). Chromosome Transfer in Pseudomonas aeruginosa mediated by R factors. Genetical Research, Cambridge 17, 169172.CrossRefGoogle ScholarPubMed
Sykes, R. B. & Richmond, M. H. (1970). Intergeneric transfer of a β-lactamase gene between Pseudomonas aeruginosa and Escherichia coli. Nature (London) 226, 952954.CrossRefGoogle Scholar
Watanabe, T. (1971). Infectious drug resistance in bacteria. Current Topics in Microbiology and Immunology 56, 4398, ed. Arber, W. et al. Springer-Verlag.Google Scholar
Witchitz, J. L. & Chabbert, Y. A. (1972). Resistance transferable a la gentamicine. II. Transmission et liaisons du caractere de resistance. Annales de I'Institut Pasteur 122, 367378.Google Scholar