Skip to main content Accessibility help

Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes



Population genetics theory predicts that differences in breeding systems should be an important factor in the dynamics of selfish genetic elements, because of different intensities of selection on both hosts and elements. We examined population frequencies of transposable elements (TEs) in natural populations of the self-fertilizing nematode Caenorhabditis elegans and its outcrossing relative Caenorhabditis remanei. We identified a Tc1-like class of elements in the C. remanei genome with homology to the terminal inverted repeats of the C. elegans Tc1 transposon, which we name mTcre1. We measured levels of insertion polymorphism for all 32 Tc1 elements present in the genome sequence of the C. elegans N2 strain, and 16 mTcre1 elements from the genome sequence of the C. remanei PB4641 strain. We show that transposons are less polymorphic and segregate at higher frequencies in C. elegans compared with C. remanei. Estimates of the intensity of selection based on the population frequencies of polymorphic elements suggest that transposons are selectively neutral in C. elegans, but subject to purifying selection in C. remanei. These results are consistent with a reduced efficacy of natural selection against TEs in selfing populations, but may in part be explained by non-equilibrium TE dynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes
      Available formats


Corresponding author

*Corresponding author: Elie S. Dolgin, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JT, UK. Tel: +44 131 650 5476. Fax: +44 131 650 6564. e-mail:
*Corresponding author: Asher D. Cutter, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada. Tel: +1 416 978 4602. Fax: +1 416 978 5878. e-mail:


Hide All
Abad, P., Quiles, C., Tares, S., Piotte, C., Castagnone-Sereno, P., Abadon, M. & Dalmasso, A. (1991). Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distributed in the phylum Nematoda. Journal of Molecular Evolution 33, 251258.
Babity, J. M., Starr, T. V. B. & Rose, A. M. (1990). Tc1 transposition and mutator activity in a Bristol strain of Caenorhabditis elegans. Molecular and General Genetics 222, 606611.
Barrière, A. & Félix, M.-A. (2005). High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Current Biology 15, 11761184.
Barrière, A. & Félix, M.-A. (2007). Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics 176, 9991011.
Bartolomé, C. & Maside, X. (2004). The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. Genetics Research 83, 91100.
Bartolomé, C., Maside, X. & Charlesworth, B. (2002). On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Molecular Biology and Evolution 19, 926937.
Batzer, M. A. & Deininger, P. L. (2002). Alu repeats and human genomic diversity. Nature Reviews Genetics 3, 370379.
Bennett, E. A., Coleman, L. E., Tsui, C., Pittard, W. S. & Devine, S. E. (2004). Natural genetic variation caused by transposable elements in humans. Genetics 168, 933951.
Bessereau, J.-L. (2006). Transposons in C. elegans. In Wormbook (ed. The C. elegans Research Community),, doi/10.1895/wormbook.1.70.1.
Boissinot, S., Entezam, A. & Furano, A. V. (2001). Selection against deleterious LINE-1-containing loci in the human lineage. Molecular Biology and Evolution 18, 926935.
Boulesteix, M., Simard, F., Antonio-Nkondjio, C., Awono-Ambene, H. P., Fontenille, D. & Biémont, C. (2007). Insertion polymorphism of transposable elements and population structure of Anopheles gambiae M and S molecular forms in Cameroon. Molecular Ecology 16, 441452.
Brookfield, J. F. (1986). A model for DNA sequence evolution within transposable element families. Genetics 112, 393407.
Brookfield, J. F. Y. & Badge, R. M. (1997). Population genetic models of transposable elements. Genetica 100, 281294.
Bégin, M. & Schoen, D. J. (2006). Low impact of germline transposition on the rate of mildly deleterious mutation in Caenorhabditis elegans. Genetics 174, 21292136.
Bégin, M. & Schoen, D. J. (2007). Transposable elements, mutational correlations, and population divergence in Caenorhabditis elegans. Evolution 61, 10621070.
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetics Research 42, 127.
Charlesworth, D. & Charlesworth, B. (1995). Transposable elements in inbreeding and outbreeding populations. Genetics 140, 415417.
Charlesworth, B. & Langley, C. H. (1986). The evolution of self-regulated transposition of transposable elements. Genetics 112, 359383.
Charlesworth, B. & Langley, C. H. (1989). The population genetics of Drosophila transposable elements. Annual Reviews of Genetics 23, 251287.
Chasnov, J. R., So, W. K., Chan, C. M. & Chow, K. L. (2007). The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proceedings of the National Academy of Sciences of the USA 104, 67306735.
Collins, J., Saari, B. & Anderson, P. (1987). Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature 328, 726728.
Cutter, A. D. (2006). Nucleotide polymorphism and linkage disequilibrium in wild populations of the partial selfer Caenorhabditis elegans. Genetics 172, 171184.
Cutter, A. D. (2008). Multilocus patterns of polymorphism and selection across the X-chromosome of Caenorhabditis remanei. Genetics 178, 16611672.
Cutter, A. D. & Payseur, B. A. (2003). Selection at linked sites in the partial selfer Caenorhabditis elegans. Molecular Biology and Evolution 20, 665673.
Cutter, A. D., Baird, S. E. & Charlesworth, D. (2006). High nucleotide polymorphism and rapid decay of linkage disequilibrium in wild populations of Caenorhabditis remanei. Genetics 174, 901913.
Denver, D. R., Morris, K. & Thomas, W. K. (2003). Phylogenetics in Caenorhabditis elegans: an analysis of divergence and outcrossing. Molecular Biology and Evolution 20, 393400.
Dolgin, E. S., Charlesworth, B., Baird, S. E. & Cutter, A. D. (2007). Inbreeding and outbreeding depression in Caenorhabditis nematodes. Evolution 61, 13391352.
Dolgin, E. S., Félix, M.-A. & Cutter, A. D. (2008). Hakuna Nematoda: genetic and phenotyic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity 100, 304315.
Doolittle, W. F. & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601603.
Duret, L., Marais, G. & Biémont, C. (2000). Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. Genetics 156, 16611669.
Duvernell, D. D. & Turner, B. J. (1999). Variation and divergence of death valley pupfish populations at retrotransposon-defined loci. Molecular Biology and Evolution 16, 363371.
Egilmez, N. K., Ebert, R. H. II & Shmookler Reis, R. J. (1995). Strain evolution in Caenorhabditis elegans: transposable elements are markers of interstrain evolutionary history. Journal of Molecular Evolution 40, 372381.
Eide, D. & Anderson, P. (1985). Transposition of Tc1 in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the USA 82, 17561760.
Emmons, S. W. & Yesner, L. (1984). High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36, 599605.
Emmons, S. W., Yesner, L., Ruan, K. S. & Katzenberg, D. (1983). Evidence for a transposon in Caenorhabditis elegans. Cell 32, 5565.
Finnegan, D. J. (1992) Transposable elements. In The Genome of Drosophila melanogaster (ed. Lindsley, D. L. & Zimm, G.), pp. 10961107. New York: Academic Press.
Fischer, S. E. J., Wienholds, E. & Plasterk, R. H. A. (2003). Continuous exchange of sequence information between dispersed Tc1 transposons in the Caenorhabditis elegans genome. Genetics 164, 127134.
Franchini, L. F., Ganko, E. W. & McDonald, J. F. (2004). Retrotransposon-gene associations are widespread among D. melanogaster populations. Molecular Biology and Evolution 21, 13231331.
Garcia, L. R., LeBoeuf, B. & Koo, P. (2007). Diversity in mating behavior of hermaphroditic and male–female Caenorhabditis nematodes. Genetics 175, 17611771.
Graustein, A., Gaspar, J. M., Walters, J. R. & Palopoli, M. F. (2002). Levels of DNA polymorphism vary with mating system in the nematode genus Caenorhabditis. Genetics 161, 99107.
Haag, E. S. & Ackerman, A. D. (2005). Intraspecific variation in fem-3 and tra-2, two rapidly coevolving nematode sex-determining genes. Gene 349, 3542.
Haber, M., Schüngel, M., Putz, A., Müller, S., Hasert, B. & Schulenburg, H. (2005). Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Molecular Biology and Evolution 22, 160173.
Harris, L. J. & Rose, A. M. (1989). Structural analysis of Tc1 elements in Caenorhabditis elegans var. Bristol (strain N2). Plasmid 22, 1021.
Harris, L. J., Prasad, S. & Rose, A. M. (1990). Isolation and sequence analysis of Caenorhabditis briggsae repetitive elements related to the Caenorhabditis elegans transposon Tc1. Journal of Molecular Evolution 30, 359369.
Hickey, D. A. (1982). Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519531.
Hodgkin, J. & Doniach, T. (1997). Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146, 149164.
Hoekstra, R., Otsen, M., Lenstra, J. A. & Roos, M. H. (1999). Characterisation of a polymorphic Tc1-like transposable element of the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology 102, 157166.
Jacobson, J. W., Medhora, M. M. & Hartl, D. L. (1986). Molecular structure of a somatically unstable transposable element in Drosophila. Proceedings of the National Academy of Sciences of the USA 83, 86848688.
Jovelin, R., Ajie, B. C. & Phillips, P. C. (2003). Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis. Molecular Ecology 12, 13251337.
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. A. M. & Plasterk, R. H. A. (1999). mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133141.
Kidwell, M. G. & Lisch, D. R. (2001). Transposable elements, parasitic DNA, and genome evolution. Evolution 55, 124.
Kiontke, K. & Fitch, D. H. A. (2005). The phylogenetic relationships of Caenorhabditis and other rhabditids. In Wormbook (ed. The C. elegans Research Community),, doi/10.1895/wormbook.1.11.1.
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860921.
Liao, L. W., Rosenzweig, B. & Hirsh, D. (1983). Analysis of a transposable element in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the USA 80, 35853589.
Marais, G. (2003). Biased gene conversion: implications for genome and sex evolution. Trends in Genetics 19, 330338.
Matsen, F. A. & Wakeley, J. (2006). Convergence to the island-model coalescent process in populations with restricted migration. Genetics 172, 701708.
Medstrand, P., van de Lagemaat, L. N. & Mager, D. L. (2002). Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Research 12, 14831495.
Moerman, D. G. & Waterston, R. H. (1989). Mobile elements in Caenorhabditis elegans and other nematodes. In Mobile DNA (ed. Berg, D. E. & Howe, M. H.), pp. 537556. Washington, DC: American Society for Microbiology.
Montgomery, E. A., Huang, S. M., Langley, C. H. & Judd, B. H. (1991). Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129, 10851098.
Morgan, M. T. (2001). Transposable element number in mixed mating populations. Genetics Research 77, 261275.
Mori, I., Moerman, D. G. & Waterston, R. H. (1990). Interstrain crosses enhance excision of Tc1 transposable elements in Caenorhabitis elegans. Molecular and General Genetics 220, 251255.
Neafsey, D. E., Blumenstiel, J. P. & Hartl, D. L. (2004). Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Molecular Biology and Evolution 21, 23102318.
Nuzhdin, S. V. (1999). Sure facts, speculations, and open questions about evolution of transposable elements. Genetica 107, 129137.
Ohta, T. (1985). A model of duplicative transposition and gene conversion for repetitive DNA families. Genetics 110, 513524.
Orgel, L. E. & Crick, F. H. (1980). Selfish DNA: the ultimate parasite. Nature 284, 604607.
O'Brochta, D. A., Subramanian, R. A., Orsetti, J., Peckham, E., Nolan, N., Arensburger, P., Atkinson, P. W. & Charlwood, D. J. (2006). hAT element population genetics in Anopheles gambiae s.l. in Mozambique. Genetica 127, 185198.
Petrov, D., Aminetzrach, Y. T., Davis, J. C., Bensasson, D. & Hirsh, A. E. (2003). Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Molecular Biology and Evolution 20, 880892.
Plasterk, R. H. A., Izsvák, Z. & Ivics, Z. (1999). Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends in Genetics 15, 326332.
Plasterk, R. H. A. & van Luenen, H. G. A. M. (1997). Transposons. In C. elegans II (ed. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 97116. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Rezsohazy, R., van Luenen, H. G. A. M., Durbin, R. M. & Plasterk, R. H. A. (1997). Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Research 25, 40484054.
Rizzon, C., Marais, G., Gouy, M. & Biémont, C. (2002). Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Research 12, 400407.
Rizzon, C., Martin, E., Marais, G., Duret, L., Segalat, L. & Biémont, C. (2003). Patterns of selection against transposons inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans. Genetics 165, 11271135.
Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.
Sánchez-Garcia, A., Maside, X. & Charlesworth, B. (2005). High rate of horizontal transfer of transposable elements in Drosophila. Trends in Genetics 21, 200203.
Schlenke, T. A. & Begun, D. J. (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences of the USA 101, 16261631.
Sivasundar, A. & Hey, J. (2005). Sampling from natural populations with RNAi reveals high outcrossing and population structure in Caenorhabditis elegans. Current Biology 15, 15981602.
Slatkin, M. (1985). Genetic differentiation of transposable elements under mutation and unbiased gene conversion. Genetics 110, 145158.
Takasaki, N., Amaki, T. Y., Hamada, M., Park, L. & Okada, N. (1997). The salmon SmaI family of short interspersed repetitive elements (SINEs): interspecific and intraspecific variation of the insertion of SINEs in the genomes of chum and pink salmon. Genetics 146, 369380.
Tam, S. M., Causse, M., Garchery, C., Burck, H., Mhiri, C., & Granbastien, M.-A. (2007). The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. Journal of Evolutionary Biology 20, 10561072.
van Luenen, H. G. A. M., Colloms, S. D. & Plasterk, R. H. A. (1994). The mechanism of transposition of Tc3 in C. elegans. Cell 79, 293301.
Vos, J. C. & Plasterk, R. H. A. (1994). Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO Journal 13, 61256132.
Wakeley, J. (2003). Polymorphism and divergence for island-model species. Genetics 163, 411420.
Weir, B. S. & Hill, W. G. (1980). Effect of mating structure on variation in linkage disequilibrium. Genetics 95, 477488.
Wright, S. I. & Schoen, D. J. (1999). Transposon dynamics and the breeding system. Genetica 107, 139148.
Wright, S. I., Hien Le, Q., Schoen, D. J. & Bureau, T. E. (2001). Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis. Genetics 158, 12791288.
Zampicinini, G., Blinov, A., Cervella, P., Guryev, V. & Sella, G. (2004). Insertional polymorphism of a non-LTR mobile element (NLRCth1) in European populations of Chironomus riparius (Diptera, Chironomidae) as detected by transposon insertion display. Genome 47, 11541163.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed