Skip to main content
    • Aa
    • Aa

Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes


Population genetics theory predicts that differences in breeding systems should be an important factor in the dynamics of selfish genetic elements, because of different intensities of selection on both hosts and elements. We examined population frequencies of transposable elements (TEs) in natural populations of the self-fertilizing nematode Caenorhabditis elegans and its outcrossing relative Caenorhabditis remanei. We identified a Tc1-like class of elements in the C. remanei genome with homology to the terminal inverted repeats of the C. elegans Tc1 transposon, which we name mTcre1. We measured levels of insertion polymorphism for all 32 Tc1 elements present in the genome sequence of the C. elegans N2 strain, and 16 mTcre1 elements from the genome sequence of the C. remanei PB4641 strain. We show that transposons are less polymorphic and segregate at higher frequencies in C. elegans compared with C. remanei. Estimates of the intensity of selection based on the population frequencies of polymorphic elements suggest that transposons are selectively neutral in C. elegans, but subject to purifying selection in C. remanei. These results are consistent with a reduced efficacy of natural selection against TEs in selfing populations, but may in part be explained by non-equilibrium TE dynamics.

Corresponding author
*Corresponding author: Elie S. Dolgin, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JT, UK. Tel: +44 131 650 5476. Fax: +44 131 650 6564. e-mail:
*Corresponding author: Asher D. Cutter, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada. Tel: +1 416 978 4602. Fax: +1 416 978 5878. e-mail:
Hide All
P. Abad , C. Quiles , S. Tares , C. Piotte , P. Castagnone-Sereno , M. Abadon & A. Dalmasso (1991). Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distributed in the phylum Nematoda. Journal of Molecular Evolution 33, 251258.

A. Barrière & M.-A. Félix (2005). High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Current Biology 15, 11761184.

C. Bartolomé , X. Maside & B. Charlesworth (2002). On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Molecular Biology and Evolution 19, 926937.

M. A. Batzer & P. L. Deininger (2002). Alu repeats and human genomic diversity. Nature Reviews Genetics 3, 370379.

E. A. Bennett , L. E. Coleman , C. Tsui , W. S. Pittard & S. E. Devine (2004). Natural genetic variation caused by transposable elements in humans. Genetics 168, 933951.

S. Boissinot , A. Entezam & A. V. Furano (2001). Selection against deleterious LINE-1-containing loci in the human lineage. Molecular Biology and Evolution 18, 926935.

M. Boulesteix , F. Simard , C. Antonio-Nkondjio , H. P. Awono-Ambene , D. Fontenille & C. Biémont (2007). Insertion polymorphism of transposable elements and population structure of Anopheles gambiae M and S molecular forms in Cameroon. Molecular Ecology 16, 441452.

M. Bégin & D. J. Schoen (2006). Low impact of germline transposition on the rate of mildly deleterious mutation in Caenorhabditis elegans. Genetics 174, 21292136.

M. Bégin & D. J. Schoen (2007). Transposable elements, mutational correlations, and population divergence in Caenorhabditis elegans. Evolution 61, 10621070.

B. Charlesworth & C. H. Langley (1989). The population genetics of Drosophila transposable elements. Annual Reviews of Genetics 23, 251287.

J. R. Chasnov , W. K. So , C. M. Chan & K. L. Chow (2007). The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proceedings of the National Academy of Sciences of the USA 104, 67306735.

J. Collins , B. Saari & P. Anderson (1987). Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature 328, 726728.

A. D. Cutter (2006). Nucleotide polymorphism and linkage disequilibrium in wild populations of the partial selfer Caenorhabditis elegans. Genetics 172, 171184.

A. D. Cutter & B. A. Payseur (2003). Selection at linked sites in the partial selfer Caenorhabditis elegans. Molecular Biology and Evolution 20, 665673.

E. S. Dolgin , B. Charlesworth , S. E. Baird & A. D. Cutter (2007). Inbreeding and outbreeding depression in Caenorhabditis nematodes. Evolution 61, 13391352.

E. S. Dolgin , M.-A. Félix & A. D. Cutter (2008). Hakuna Nematoda: genetic and phenotyic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity 100, 304315.

W. F. Doolittle & C. Sapienza (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601603.

D. D. Duvernell & B. J. Turner (1999). Variation and divergence of death valley pupfish populations at retrotransposon-defined loci. Molecular Biology and Evolution 16, 363371.

S. W. Emmons & L. Yesner (1984). High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36, 599605.

D. J. Finnegan (1992) Transposable elements. In The Genome of Drosophila melanogaster (ed. D. L. Lindsley & G. Zimm ), pp. 10961107. New York: Academic Press.

L. R. Garcia , B. LeBoeuf & P. Koo (2007). Diversity in mating behavior of hermaphroditic and male–female Caenorhabditis nematodes. Genetics 175, 17611771.

E. S. Haag & A. D. Ackerman (2005). Intraspecific variation in fem-3 and tra-2, two rapidly coevolving nematode sex-determining genes. Gene 349, 3542.

M. Haber , M. Schüngel , A. Putz , S. Müller , B. Hasert & H. Schulenburg (2005). Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Molecular Biology and Evolution 22, 160173.

L. J. Harris , S. Prasad & A. M. Rose (1990). Isolation and sequence analysis of Caenorhabditis briggsae repetitive elements related to the Caenorhabditis elegans transposon Tc1. Journal of Molecular Evolution 30, 359369.

R. Hoekstra , M. Otsen , J. A. Lenstra & M. H. Roos (1999). Characterisation of a polymorphic Tc1-like transposable element of the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology 102, 157166.

J. W. Jacobson , M. M. Medhora & D. L. Hartl (1986). Molecular structure of a somatically unstable transposable element in Drosophila. Proceedings of the National Academy of Sciences of the USA 83, 86848688.

R. Jovelin , B. C. Ajie & P. C. Phillips (2003). Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis. Molecular Ecology 12, 13251337.

R. F. Ketting , T. H. Haverkamp , H. G. A. M. van Luenen & R. H. A. Plasterk (1999). mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133141.

K. Kiontke & D. H. A. Fitch (2005). The phylogenetic relationships of Caenorhabditis and other rhabditids. In Wormbook (ed. The C. elegans Research Community),, doi/10.1895/wormbook.1.11.1.

L. W. Liao , B. Rosenzweig & D. Hirsh (1983). Analysis of a transposable element in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the USA 80, 35853589.

F. A. Matsen & J. Wakeley (2006). Convergence to the island-model coalescent process in populations with restricted migration. Genetics 172, 701708.

P. Medstrand , L. N. van de Lagemaat & D. L. Mager (2002). Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Research 12, 14831495.

I. Mori , D. G. Moerman & R. H. Waterston (1990). Interstrain crosses enhance excision of Tc1 transposable elements in Caenorhabitis elegans. Molecular and General Genetics 220, 251255.

D. E. Neafsey , J. P. Blumenstiel & D. L. Hartl (2004). Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Molecular Biology and Evolution 21, 23102318.

L. E. Orgel & F. H. Crick (1980). Selfish DNA: the ultimate parasite. Nature 284, 604607.

D. A. O'Brochta , R. A. Subramanian , J. Orsetti , E. Peckham , N. Nolan , P. Arensburger , P. W. Atkinson & D. J. Charlwood (2006). hAT element population genetics in Anopheles gambiae s.l. in Mozambique. Genetica 127, 185198.

C. Rizzon , G. Marais , M. Gouy & C. Biémont (2002). Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Research 12, 400407.

A. Sánchez-Garcia , X. Maside & B. Charlesworth (2005). High rate of horizontal transfer of transposable elements in Drosophila. Trends in Genetics 21, 200203.

T. A. Schlenke & D. J. Begun (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences of the USA 101, 16261631.

A. Sivasundar & J. Hey (2005). Sampling from natural populations with RNAi reveals high outcrossing and population structure in Caenorhabditis elegans. Current Biology 15, 15981602.

S. M. Tam , M. Causse , C. Garchery , H. Burck , C. Mhiri , & M.-A. Granbastien (2007). The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. Journal of Evolutionary Biology 20, 10561072.

H. G. A. M. van Luenen , S. D. Colloms & R. H. A. Plasterk (1994). The mechanism of transposition of Tc3 in C. elegans. Cell 79, 293301.

S. I. Wright & D. J. Schoen (1999). Transposon dynamics and the breeding system. Genetica 107, 139148.

G. Zampicinini , A. Blinov , P. Cervella , V. Guryev & G. Sella (2004). Insertional polymorphism of a non-LTR mobile element (NLRCth1) in European populations of Chironomus riparius (Diptera, Chironomidae) as detected by transposon insertion display. Genome 47, 11541163.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 6
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 168 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.