Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T12:43:26.015Z Has data issue: false hasContentIssue false

Resistance of Escherichia coli to penicillins: III. AmpB, a locus affecting episomally and chromosomally mediated resistance to ampicillin and chloramphenicol

Published online by Cambridge University Press:  14 April 2009

Kurt Nordström
Affiliation:
Department of Microbiology, University of Umeå, S 901 87, Umeå 6, Sweden
Kerstin G. Eriksson-Grennberg
Affiliation:
Department of Microbiology, University of Umeå, S 901 87, Umeå 6, Sweden
Hans G. Boman
Affiliation:
Department of Microbiology, University of Umeå, S 901 87, Umeå 6, Sweden

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have previously described strains of Escherichia coli K12 resistant to D, L-ampicillin concentrations of 50 μg/ml (Eriksson-Grennberg et al. 1965; Boman et al. 1967). Such strains were assumed to be double mutants carrying the genes ampA and ampB. We here describe genetic steps which produce strains carrying only the ampB gene. Determinations of resistance showed that ampA increased the resistance provided by ampA+ by a factor of 10–15. AmpB increased the resistance of both ampA and ampA+ by a factor of 2.

R-factors were introduced into two sets of strains with all combinations of ampA, ampB and their wild type alleles. AmpA and the R-factors gave additive effects on resistance, while ampB doubled the ampicillin resistance mediated by ampA as well as by the R-factors. AmpB also enhanced the chloramphenicol resistance of R-factor and of the wild type chromosomal genes. It is suggested that ampB resembles the modifying genes previously described and that R-factors can be useful for the identification of such genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

References

REFERENCES

Ahmed, K. A. & Woods, R. A. (1967). A genetic analysis of resistance to nystatin in Saccharomyces cerevisiae. Genet. Res. 9, 179193.CrossRefGoogle ScholarPubMed
Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bact. 62, 293300.CrossRefGoogle ScholarPubMed
Boman, H. G. & Eriksson, K. G. (1963). Penicillin induced lysis in Escherichia coli. J. gen. Microbiol. 31, 399–352.CrossRefGoogle ScholarPubMed
Boman, H. G., Eriksson-Grennberg, K. G., Földes, J. & Lindström, E. B. (1967). The regulation and possible evolution of a penicillinase-like enzyme in Escherichia coli. In Regulation of Nucleic Acid and Protein Biosynthesis, pp. 366372. (Eds. Koningsberger, V. V. & Bosch, L.). Amsterdam: Elsevier Publ. Co.Google Scholar
Boman, H. G., Nordström, K., Eriksson-Grennberg, K. G. & Normark, S. (1968). Two types of chromosomal genes for ampicillin resistance and their effect on R-factor mediated resistance in Escherichia coli. Biochem. J. 106, 42 p.Google Scholar
Boman, H. G., Eriksson-Grennberg, K. G., Normark, S. & Matsson, E. (1968). Resistance of Escherichia coli to penicillins. IV. Genetic study of mutants resistant to D, L-ampicillin concentrations of 100 μg/ml. Genet. Res., 12, 169185.CrossRefGoogle Scholar
Datta, N. (1965). Infectious drug resistance. Br. med. Bull, 21. 254259.CrossRefGoogle ScholarPubMed
Datta, N. & Richmond, M. H. (1966). The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem. J. 98, 204209.CrossRefGoogle ScholarPubMed
Eriksson-Grennberg, K. G., Boman, H. G., Jansson, J. A. T. & Thorén, S. (1965). Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bact. 90, 5462.CrossRefGoogle ScholarPubMed
Eriksson-Grennberg, K. G. (1968). Resistance of Escherichia coli to penicillins. II. An improved mapping of the ampA gene. Genet. Res. 12, 147156.CrossRefGoogle Scholar
Gross, J. & Englesberg, E. (1959). Determination of the order of mutational sites governing 1-arabinose utilization in Escherichia coli B/r by transduction with phage Plbt. Virology, 9, 314331.CrossRefGoogle Scholar
Hotchkiss, R. D. (1951). Transfer of penicillin resistance in pneumococci by the desoxyribo-nucleate derived from resistant cultures. Cold Spring Harbor Symp. quat. Biol. 16, 457461.CrossRefGoogle ScholarPubMed
Lindström, B. & Boman, H. G. (1968). Purification of penicillinase from wild type and two ampicillin resistant mutants of Escherichia coli. Biochem. J. 106, 43 p.Google Scholar
Meynell, E. & Data, N. (1966). The relation of resistance transfer factors to the F-factor (sex-factor) of Escherichia coli K12. Genet. Res. 7, 134140.CrossRefGoogle Scholar
Nordström, K. & Burman, L. G. (1968). Resistance of Escherichia coli to penicillins. VI. AmpB mediated sensitivity to osmotic shock and to cycloserine. In preparation.Google Scholar
Reeve, E. C. R. (1966). Characteristics of some single-step mutants of chloramphenicol resistance in Escherichia coli K-12 and their interactions with R-factor genes. Genet. Res. 7, 281286.CrossRefGoogle Scholar
Stent, G. S. & Brenner, S. (1961). A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl. Acad. Sci. U.S.A. 47, 20052014.CrossRefGoogle ScholarPubMed
Taylor, A. L. & Trotter, C. D. (1967). Revised linkage map of Escherichia coli K-12. Bact. Rev. 31, 332353.CrossRefGoogle Scholar
Watanabe, T. (1963). Infective heredity of multiple drug resistance in bacteria. Bact. Rev. 27, 87115.CrossRefGoogle ScholarPubMed
Vogel, H. J. & Bonner, D. M. (1956). Acetylornithinase of Escherichia coli: partial purification and some properties. J. Biol. Chem. 218, 97106.CrossRefGoogle ScholarPubMed