Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T17:55:57.941Z Has data issue: false hasContentIssue false

A search for temperature-sensitive mutants of Ustilago maydis blocked in DNA synthesis

Published online by Cambridge University Press:  14 April 2009

P. Unrau
Affiliation:
National Institute for Medical Research, Mill Hill, London, N.W.7
R. Holliday
Affiliation:
National Institute for Medical Research, Mill Hill, London, N.W.7
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over 400 temperature-sensitive mutants of Ustilago maydis have been tested for DNA synthesis at the restrictive temperature of 32°C by measuring 14C adenine incorporation into DNA and RNA. Five mutants were defective in DNA synthesis but none was completely blocked. One mutant, tsd-1, which is unlinked to the others, forms long uninucleate filaments at 32°C which die exponentially after 4h temperature treatment. The phenotype is comparable to that of thymine-starved bacteria, but it is possible that rather than being specifically defective in DNA synthesis the mutant is blocked in nuclear division.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Barner, H. D. & Cohen, S. S. (1957). The isolation and properties of amino acid requiring mutants of a thymineless bacterium. J. Bact. 74, 350355.CrossRefGoogle ScholarPubMed
Bonhoeffer, F. (1966). DNA transfer and DNA synthesis during bacterial conjugation. Z. VererbLehre 98, 141149.Google ScholarPubMed
Burton, K. (1956). A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of DNA. Biochem. J. 62, 315322.CrossRefGoogle Scholar
Cerdá-Almeda, E., Hanawalt, P. C. & Guerola, N. (1968). Mutagenesis of the replication point by nitrosoguanidine: map and pattern of replication of the Escherichia coli chromosome. J. molec. Biol. 33, 705719.CrossRefGoogle Scholar
Chakraborty, K. P. & Loring, H. S. (1960). Incorporation of uracil-2-C14 into the nucleic acids of Neurospora crassa. J. biol. Chem. 235, 21222126.CrossRefGoogle ScholarPubMed
Cohen, S. S. & Barner, H. D. (1954). Studies on unbalanced growth in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 40, 885893.CrossRefGoogle ScholarPubMed
Davies, J. W. & Cocking, E. C. (1966). Liquid scintillation counting of 14C and 3H samples using glass-fibre or filter-paper discs. Biochim. biophys. Acta 115, 511513.CrossRefGoogle ScholarPubMed
Ennis, H. L. & Lubin, M. (1964). Cycloheximide: Defects of protein synthesis in mammalian cells. Science, N. Y. 146, 14741476.CrossRefGoogle Scholar
Esposito, R. E. & Holliday, R. (1964). The effect of 5-fluorodeoxyuridine on genetic replication and mitotic crossing-over in synchronised cultures of U. maydis. Genetics, Princeton, 50, 10091017.CrossRefGoogle Scholar
Fink, R. M. & Fink, K. (1962). Utilisation of radiocarbon from thymidine and other pre-cursors of RNA in Neurospora crassa. J. biol. Chem. 237, 22892290.CrossRefGoogle Scholar
Gallant, J. & Spottswood, T. (1965). The recombinagenic effect of thymidylate starvation in Escherichia coli merodiploids. Genetics, Princeton 52, 107118.CrossRefGoogle Scholar
Gallant, J. & Suskind, S. R. (1961). Relationship between thymineless death and UV inactivation in Escherichia coli. J. Bact. 82, 187194.CrossRefGoogle Scholar
Grivell, A. R. & Jackson, T. F. (1968). Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms and the relevance of this to the specific labelling of deoxyribonucleic acid. J. gen. Microbiol. 54, 307317.CrossRefGoogle Scholar
Hartwell, L. H. (1967). Macromolecule synthesis in temperature sensitive mutants of yeast. J. Bact. 93, 16621670.CrossRefGoogle ScholarPubMed
Heath, I. B. & Greenwood, A. D. (1968). Electron microscopic observations of dividing somatic nuclei in Saprolegnia. J. gen. Microbiol. 53, 287289.CrossRefGoogle Scholar
Hirota, Y., Jacob, F., Ryter, A., Buttin, G. & Nakai, T. (1968). On the process of cellular division in Escherichia coli. I. A symmetrical cell division and production of deoxyribonucleic acid-less bacteria. J. molec. Biol. 35, 175192.CrossRefGoogle Scholar
Holliday, R. (1961). The genetics of Ustilago maydis. Genet. Res. 2, 204230.CrossRefGoogle Scholar
Holliday, R. (1964). The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces. Genetics, Princeton 50, 323335.CrossRefGoogle ScholarPubMed
Holliday, R. (1965). Induced mitotic crossing-over in relation to genetic replication in synchronously dividing cells of Ustilago maydis. Genet. Res. 5, 104120.CrossRefGoogle Scholar
Holliday, R. (1968). Genetic recombination in fungi. In Replication and Recombination of Genetic Material. Pp. 157174. Australian Academy of Science.Google Scholar
Horowitz, N. H. & Leupold, U. (1951). Some recent studies bearing on the one gene-one enzyme hypothesis. Cold Spring Harb. Symp. quant. Biol. 16, 6572.CrossRefGoogle Scholar
Hurlbert, R. B., Schmitz, H., Brumm, A. F. & Potter, V. R. (1954). Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J. biol. Chem. 209, 2339.CrossRefGoogle ScholarPubMed
La Cour, L. F., Martin, P. G. & Holliday, R. (1960). Ann. Rep. John Innes hort. Instn 51, 24.Google Scholar
Lowry, O. H., Roseborough, N. T., Farr, A. L. & Randall, R. J.Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265275.CrossRefGoogle Scholar
Mendelsohn, N. H. & Gross, J. D. (1967). Characterisation of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J. Bact. 94, 16031608.CrossRefGoogle Scholar
Ogur, M. & Rosen, B. (1951). The nucleic acids of plant tissues: I. Archs Biochem. 25, 262276.Google Scholar
Okazaki, R., Okazaki, T., Sakabe, K., Sugimoto, K. & Sugino, A. (1968). Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesised chains. Proc. natn. Acad. Sci. U.S.A. 59, 598605.CrossRefGoogle ScholarPubMed
Pauling, C. & Hanawalt, P. C. (1965). Nonconservative DNA replication in bacteria after thymine starvation. Proc. natn. Acad. Sci. U.S.A. 54, 17281735.CrossRefGoogle ScholarPubMed
Robinow, C. F. & Marak, J. (1966). Observations on a fibre apparatus in the nucleus of the yeast cell. J. Cell Biol. 29, 129151.CrossRefGoogle Scholar
Siegel, M. R. & Sisler, H. D. (1964). Site of action of cycloheximide in cells of Saccharomyces pastorianus. I. Effect of the antibiotic on cellular metabolism. Biochim. Biophys Acta. 87, 7082.Google ScholarPubMed
Speyer, J. F. (1965). Mutagenic DNA polymerase. Biochem. biophys. Res. Commun. 21, 6.CrossRefGoogle ScholarPubMed
Sugimoto, K., Okazaki, T. & Okazaki, R. (1968). Mechanism of DNA chain growth. II. Accumulation of newly synthesised short chains in E. coli infected with ligase-defective T4 phages. Proc. natn. Acad. Sci. U.S.A. 60, 13561362.CrossRefGoogle Scholar
Unrau, P. (1968). Temperature-sensitive mutants of Ustilago maydis and their effects on replication and recombination. Ph.D. thesis, University of London.Google Scholar
Williamson, D. H. (1965). The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 25, 517528.CrossRefGoogle ScholarPubMed
Williamson, D. H. & Scopes, A. W. (1962). Cell division and the synthesis of macro-molecules in synchronously dividing cultures of Saccharomyces cerevisiae. Proc. 12th Congr. Int. Union. Physiol. Sci., Leiden 1, 759765.Google Scholar