Skip to main content Accessibility help
×
Home

Variation in actual relationship as a consequence of Mendelian sampling and linkage

  • W.G. HILL (a1) and B.S. WEIR (a2)

Summary

Although the expected relationship or proportion of genome shared by pairs of relatives can be obtained from their pedigrees, the actual quantities deviate as a consequence of Mendelian sampling and depend on the number of chromosomes and map length. Formulae have been published previously for the variance of actual relationship for a number of specific types of relatives but no general formula for non-inbred individuals is available. We provide here a unified framework that enables the variances for distant relatives to be easily computed, showing, for example, how the variance of sharing for great grandparent–great grandchild, great uncle–great nephew, half uncle–nephew and first cousins differ, even though they have the same expected relationship. Results are extended in order to include differences in map length between sexes, no recombination in males and sex linkage. We derive the magnitude of skew in the proportion shared, showing the skew becomes increasingly large the more distant the relationship. The results obtained for variation in actual relationship apply directly to the variation in actual inbreeding as both are functions of genomic coancestry, and we show how to partition the variation in actual inbreeding between and within families. Although the variance of actual relationship falls as individuals become more distant, its coefficient of variation rises, and so, exacerbated by the skewness, it becomes increasingly difficult to distinguish different pedigree relationships from the actual fraction of the genome shared.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Variation in actual relationship as a consequence of Mendelian sampling and linkage
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Variation in actual relationship as a consequence of Mendelian sampling and linkage
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Variation in actual relationship as a consequence of Mendelian sampling and linkage
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. Tel: +44-(0)131-650 5705. Fax: +44-(0)131-650 6564. e-mail: w.g.hill@ed.ac.uk

References

Hide All
Ball, F. & Stefanov, V. T. (2005). Evaluation of identity-by-descent probabilities for half-sibs on continuous genome. Mathematical Biosciences 196, 215225.
Bennett, J. H. (1953). Junctions in inbreeding. Genetica 26, 392406.
Bennett, J. H. (1954). The distribution of heterogeneity upon inbreeding. Journal of the Royal Statistical Society, Series B 16, 8899.
Bickeboller, H. & Thompson, E. A. (1996 a). Distribution of genome shared IBD by half-sibs: approximation by the Possion clumping heuristic. Theoretical Population Biology 50, 6690.
Bickeboller, H. & Thompson, E. A. (1996 b). The probability distribution of the amount of an individuals's genome surviving to the following generation. Genetics 143, 10431049.
Choi, Y., Wijsman, E. & Weir, B. S. (2009). Case-control association testing in the presence of unknown relationships. Genetic Epidemiology 33, 668678.
Christensen, K., Fredholm, M., Wintero, A. K., Jorgensen, J. N. & Andersen, S. (1996). Joint effect of 21 marker loci and effect of realized inbreeding on growth in pigs. Animal Science 62, 541546.
Cockerham, C. C. & Weir, B. S. (1983). Variance of actual inbreeding. Theoretical Population Biology 23, 85109.
Cornelis, M. C., Agrawal, A., Cole, J. W., Hansel, N. H., Barnes, K. C., Beaty, T. H., Bennett, S. N., Bierut, L. J., Boerwinkle, E., Doheny, K. F., Feenstra, B., Feingold, E., Fornage, M., Haiman, C. A., Harris, E. L., Hayes, M. G., Heit, J. A., Hu, F. B., Kang, J. H., Laurie, C. C., Ling, H., Teri, A., Manolio, T. A., Marazita, M. L., Mathias, R. A., Mirel, D. B., Paschall, J., Pasquale, L. R., Pugh, E. W., Rice, J. P., Udren, J., van Dam, R. M., Wang, X., Wiggs, J. L., Williams, K. & Yu, K. (2010). The Gene, Environment Association Studies Consortium (GENEVA): Maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genetic Epidemiology 34, 364372.
Donnelly, K. P. (1983). The probability that related individuals share some section of the genome identical by descent. Theoretical Population Biology 23, 3464.
Falconer, D. S. and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics 4th ed. Harlow, Essex: Longman.
Fisher, R. A. (1954). A fuller theory of ‘Junctions’ in inbreeding. Heredity 8, 187197.
Franklin, I. R. (1977). The distribution of the proportion of the genome which is homozygous by descent in inbred individuals. Theoretical Population Biology 11, 6080.
Goddard, M. (2009). Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245257.
Guo, S.-W. (1995). Proportion of genome shared identical by descent by relatives: concept, computation, and applications. American Journal of Human Genetics 56, 14681476.
Haldane, J. B. S. (1919). The combination of linkage values, and the calculation of distances between the loci of linked factors. Journal of Genetics 8, 99309.
Hill, W. G. (1993 a). Variation in genetic composition in backcrossing programs. Journal of Heredity 84, 212213.
Hill, W. G. (1993 b). Variation in genetic identity within kinships. Heredity 71, 652653.
Kong, X., Murphy, K., Raj, T., He, C., White, P. S. & Matise, T. C. (2004). A combined physical-linkage map of the human genome. American Journal of Human Genetics 75, 11431148.
Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W., Bierut, L. J., Bhangale, T., Boehm, F., Caporaso, N. E., Edenberg, H. J., Gabriel, S. B., Harris, E. L., Hu, F. B., Jacobs, K. B., Kraft, P., Landi, M. T., Lumley, T., Manolio, T., McHugh, C., Painter, I., Paschall, J., Rice, J. P., Rice, K. M., Zheng, X. & Weir, B. S., for the GENEVA Investigators. (2010). Quality control and quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology 34, 591602.
Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.
Slate, J., David, P., Dodds, K. G., Veenvliet, B. A., Glass, B. C., Broad, T. E. & McEwan, J. C. (2004). Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93, 255265.
Stam, P. (1980). The distribution of the fraction of the genome identical by descent in finite populations. Genetical Research 35, 131155.
Stam, P. & Zeven, A. C. (1981). The theoretical proportion of the donor genome in near-isogenic lines of self fertilizers bred by backcrossing. Euphytica 30, 227238.
Stefanov, V. T. (2000). Distribution of genome shared identical by descent by two individuals in grandparent-type relationship. Genetics 156, 14031410.
Stefanov, V. T. (2004). Distribution of the amount of genetic material from a chromosome segment surviving to the following generation. Journal of Applied Probability 41, 345354.
Thompson, E. A. (2008). The IBD process along four chromosomes. Theoretical Population Biology 73, 369373.
Visscher, P. M. (2009). Whole genome approaches to quantitative genetics. Genetica 136, 351358.
Visscher, P. M., Macgregor, S., Benyamin, B., Zhu, G., Gordon, S., Medland, S., Hill, W. G., Hottenga, J.-J., Willemsen, G., Boomsma, D. I., Liu, Y.-Z., Deng, H.-W., Montgomery, G. W. & Martin, N. G. (2007). Genome partitioning of genetic variation for height from 11,214 sibling pairs. American Journal of Human Genetics 81, 11041110.
Visscher, P. M., Medland, S. E., Ferreira, M. A. R., Morley, K. I., Zhu, G., Cornes, B. K., Montgomery, G. W. & Martin, N. G. (2006). Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genetics 2, e41. doi: 10.1371/journal.pgen.0020041
Weir, B. S., Anderson, A. D. & Hepler, A. B. (2006). Genetic relatedness analysis: modern data and new challenges. Nature Reviews Genetics 7, 771780.
Weir, B. S., Avery, P. J. & Hill, W. G. (1980). Effect of mating structure on variation in inbreeding. Theoretical Population Biology 18, 396429.
Weir, B. S., Cardon, L. R., Anderson, A. D., Nielsen, D. M. & Hill, W. G. (2005). Measures of human population structure show heterogeneity among genomic regions. Genome Research 15, 14681476.
Wright, S. (1922). Coefficients of inbreeding and relationship. American Naturalist 56, 330338.
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyhot, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., Goddard, M. E. & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics 42, 565569.
Yu, J. M., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B., Kresovich, S. & Buckler, E. S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38, 203208.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed