Hostname: page-component-5d59c44645-l48q4 Total loading time: 0 Render date: 2024-03-03T00:56:13.670Z Has data issue: false hasContentIssue false

Fluid flow within the damage zone of the Boccheggiano extensional fault (Larderello–Travale geothermal field, central Italy): structures, alteration and implications for hydrothermal mineralization in extensional settings

Published online by Cambridge University Press:  22 December 2010

Dipartimento di Scienze Geologiche, Università Roma Tre, 00146 Rome, Italy
Dipartimento di Scienze Geologiche, Università Roma Tre, 00146 Rome, Italy Dipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, Italy
Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome, Italy
Dipartimento di Scienze Geologiche, Università Roma Tre, 00146 Rome, Italy
Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome, Italy
Istituto di Geologia Ambientale e Geoingegneria, CNR, Rome, Italy
Author for correspondence:


The Neogene extensional province of southern Tuscany in central Italy provides an outstanding example of fossil and active structurally controlled fluid flow and epithermal ore mineralization associated with post-orogenic silicic magmatism. Characterization of the hydrodynamic regime leading to the genesis of the polysulphide deposit (known as Filone di Boccheggiano) hosted within the damage zone of the Boccheggiano Fault is a key target to assess modes of fossil hydrothermal fluid circulation in the region and, more generally, to provide inferences on fault-controlled hydrothermal fluid flow in extensional settings. We provide a detailed description of the fault zone architecture and alteration/mineralization associated with the Boccheggiano ore deposit and report the results of fluid inclusion and stable oxygen isotope studies. This investigation shows that the Boccheggiano ore consists of an adularia/illite-type epithermal deposit and that sulphide ore deposition was controlled by channelling of hydrothermal fluids of dominantly meteoric origin within the highly anisotropic permeability structure of the Boccheggiano Fault. The low permeability structure of the fault core compartmentalized the fluid outflow preventing substantial cross-fault flow, with focused fluid flow occurring at the hangingwall of the fault controlled by fracture permeability. Fluid inclusion characteristics indicate that ore minerals were deposited between 280° and 350°C in the upper levels of the brittle extending crust (lithostatic pressure in the order of 0.1 GPa). Abundant vapour-rich inclusions in ore-stage quartz are consistent with fluid immiscibility and boiling, and quartz ore vein textures suggest that mineralization in the Boccheggiano ore deposit occurred during cyclic fluid flow in a deformation regime regulated by transient and fluctuating fluid pressure conditions. Results from this study (i) predict a strongly anisotropic permeability structure of the fault damage zone during crustal extension, and (ii) indicate the rate of secondary (structural) permeability creation and maintenance by active deformation in the hangingwall of extensional faults as the major factor leading to effective hydraulic transmissivity in extensional terranes. These features intimately link ore-grade mineralization in extensional settings to telescoping of hydrothermal flow along the hangingwall block(s) of major extensional fault zones.

Original Article
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arisi Rota, F. & Vighi, L. 1971. Le mineralizzazioni a pirite e a solfuri misti. Rendiconti Società Italiana di Mineralogia & Petrografia. 27, 370422.Google Scholar
Asprey, L. B. 1976. The preparation of very pure fluorine gas. Journal Fluorine Chemistry 7, 359361.Google Scholar
Bakker, R. J. 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology 194, 323.Google Scholar
Batini, F., Brogi, A., Lazzarotto, A., Liotta, D. & Pandeli, E. 2003. Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes 26, 239–44.Google Scholar
Bellani, S., Brogi, A., Lazzarotto, A., Liotta, D. & Ranalli, G. 2004. Heat flow, deep temperatures and extensional structures in the Larderello geothermal field (Italy). Constraints on geothermal fluid flow. Journal Volcanology Geothermal Research 132, 1529.Google Scholar
Bertani, R. 2005. World geothermal power generation in the period 2001–2005. Geothermics 34, 65690.Google Scholar
Bertini, G., Casini, G., Gianelli, G. & Pandeli, E. 2006. Geological structure of the Larderello geothermal field. Terra Nova 18, 163–9.Google Scholar
Billi, A., Valle, A., Brilli, M., Faccenna, C. & Funiciello, R. 2007. Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy. Journal of Structural Geology 29, 385–95.Google Scholar
Bodnar, R. J. 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In Magmas, Fluids and Ore Deposits (ed. Thompson, J. F. H.), pp. 139–52. Mineralogical Association of Canada, Short Course no. 23.Google Scholar
Bodnar, R. J. & Vityk, M. O. 1994. Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In Fluid Inclusions in Minerals; Methods and Applications (eds De Vivo, B. & Frezzotti, M. L.), pp. 117–30. Short Course of the IMA Working Group, Blacksburg, Virginia.Google Scholar
Boiron, M. C., Cathelineau, M., Ruggieri, G., Jeanningros, A., Gianelli, G. & Banks, D. A. 2007. Active contact metamorphism and CO2–CH4 fluid production in the Larderello geothermal field (Italy) at depths between 2.3 and 4 km. Chemical Geology 237, 303–28.Google Scholar
Bons, P. D. 2000. The formation of veins and their microstructures. In Stress, Strain and Structure, a Volume in Honour of W.D. Means (eds Jessell, M. W. & Urai, J. L.). Journal of the Virtual Explorer 2.Google Scholar
Boyce, A. J., Fulignati, P. & Sbrana, A. 2003. Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. Journal of Volcanology and Geothermal Research 126, 243–62.Google Scholar
Brogi, A., Lazzarotto, A., Liotta, D. & Ranalli, G. 2003. Extensional shear zones as imaged by reflection seismic lines; the Larderello geothermal field (central Italy). Tectonophysics, 363, 127–39.Google Scholar
Caine, J. S., Evans, J. P., Forster, & C. B. 1996. Fault zone architecture and permeability structure. Geology 24, 1025–8.Google Scholar
Cameli, G. M., Dini, I. & Liotta, D. 1993. Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics, Southern Tuscany, Italy. Tectonophysics 224, 413–23.Google Scholar
Cartwright, I. & Buick, I. S. 1999. The flow of surface-derived fluids through Alice Springs age middle-crustal ductile shear zones, Reynolds Range, central Australia. Journal of Metamorphic Geology 17, 397414.Google Scholar
Cathelineau, M., Marignac, C., Boiron, M. C., Gianelli, G. & Puxeddu, M. 1994. Evidence of Li-rich brines and early magmatic water–rock interaction in a geothermal field: the fluid inclusion data from the Larderello field. Geochimica Cosmochimica Acta 58, 1083–99.Google Scholar
Cavarretta, G., Gianelli, G., & Puxeddu, M. 1982. Formation of authigenic minerals and their use as indicators of the physicochemical parameters of the fluid in the Larderello-Travale geothermal field. Economic Geology 77, 1071–84.Google Scholar
Clayton, R. N., O'Neil, J. R. & Mayeda, T. K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research 77, 3057–67.Google Scholar
Coelho, J. 2006. GEOISO – A Windows™ program to calculate and plot mass balances and volume changes occurring in a wide variety of geologic processes. Computers and Geosciences 32, 1523–8.Google Scholar
Corsini, F., Morelli, F. & Tanelli, G. 1991. A polymetallic sulfide (Cu–Pb–Zn) assemblage from the Boccheggiano-Campiano (Tuscany) pyrite deposit: application of the stannite–sphalerite geothermometer. Neues Jahrbuch für Mineralogie, Monatshefte 11, 523–8.Google Scholar
Cortecci, G., Lattanzi, P. & Tanelli, G. 1985. C- and O-isotope and fluid inclusion studies of carbonates from pyrite and polymetallic ore deposits and associated country rocks (southern Tuscany, Italy). Chemical Geology 58, 121–8Google Scholar
Costantini, A., Elter, F. M., Pandeli, E., Pascucci, V. & Sandrelli, F. 2002. Geologia dell'area di Boccheggiano e Serrabottini (Colline Metallifere, Toscana Meridionale) (with English abstract). Bollettino della Società Geologica Italiana 121, 3550.Google Scholar
Cox, S. F. 1995. Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. Journal of Geophysical Research 100, 12841–59, doi:10.1029/95JB00915.Google Scholar
Cox, S. F., Knackstedt, M. A. & Braun, J. 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems. Review in Economic Geology 14, 124.Google Scholar
Curewitz, D. & Karson, J. A. 1997. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research 79, 149–68.Google Scholar
Davis, G. H. & Reynolds, S. J. 1996. Structural Geology of Rocks and Regions. New York: Wiley.Google Scholar
De Paola, N., Faulkner, D. R. & Collettini, C. 2009. Brittle versus ductile deformation as the main control on the transport properties of low-porosity anhydrite rocks. Journal of Geophysical Research 114, B06211, doi:10.1029/2008JB005967.Google Scholar
Dini, A. 2003. Ore deposits, industrial minerals and geothermal resources. Periodico di Mineralogia 72, 4152.Google Scholar
Dini, A., Gianelli, G., Puxeddu, M. & Ruggieri, G. 2005. Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81, 131.Google Scholar
Dini, A., Innocenti, F., Rocchi, S., Tonarini, S. & Westerman, D.S. 2002. The magmatic evolution of the late Miocene laccolith–pluton–dyke granitic complex of Elba Island, Italy. Geological Magazine 139, 257–79.Google Scholar
Dipple, G. M. & Ferry, J. M. 1992. Metasomatism and fluid flow in ductile fault zones. Contributions to Mineralogy and Petrology 112, 149–64.Google Scholar
Einaudi, M. T., Hedenquist, J. W. & Inan, E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth (eds Simmonds, S. F. & Graham, I.), pp. 285–314. Society of Economic Geologists, Special Publication no. 10.Google Scholar
Fournier, R. O. & Potter, R. W. 1982. An equation correlating the solubility of quartz in water from 25° to 900°C at pressures up to 10,000 bars. Geochimica Cosmochimica Acta 46, 1969–73.Google Scholar
Franceschini, F. 1998. Evidence of an extensive Pliocene-Quaternary contact metamorphism in Southern Tuscany. Memorie della Società Geologica Italiana 52, 479–92.Google Scholar
Francus, P. 1998. An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediments. Sedimentary Geology 121, 289–98.Google Scholar
Friedman, I. & O'neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry, 6th edition (ed. Fleischer, M.). US Geological Survey Professional Paper 440-KK.Google Scholar
Gianelli, G., Manzella, A. & Puxeddu, M. 1997 Crustal models of the geothermal areas of southern Tuscany (Italy). Tectonophysics 281, 221–39.Google Scholar
Giggenbach, W. F. 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology 97, 1927–44.Google Scholar
Grant, J. A. 1986. The isocon diagram a simple solution to Gresen's equation for metasomatic alteration. Economic Geology 81, 1976–82.Google Scholar
Haar, L., Gallagher, J. S. & Kell, G. S. 1984. NBS/NRC Steam Tables.Google Scholar
Hanson, R. B. 1995. The hydrodynamics of contact metamorphism. Geological Society of America, Bulletin 107, 595611.Google Scholar
Hedenquist, J. W. & Lowenstern, J. B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–27.Google Scholar
Heinrich, C. A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineralium Deposita 39, 864–89.Google Scholar
Henley, R. W. 1985. The geothermal framework of epithermal deposits. Reviews in Economic Geology 2, 124.Google Scholar
Jagodzinski, H. 1949. Eindimensionale Fehlordnung in Kristallen Und ihr einfluss auf die röntgen interferenren. Acta Crystallographica 2, 201–7.Google Scholar
Jefferies, S. P., Holdsworth, R. E., Wibberley, C. A. J., Shimamoto, T., Spiers, C. J., Niemeijer, A. R. & Lloyd, G. E. 2006. The nature and importance of phyllonite development in crustal-scale fault cores: an example from the median tectonic line, Japan. Journal of Structural Geology 28, 220–35.Google Scholar
Jolivet, L., Faccenna, C., Goffé, B., Mattei, M., Rossetti, F., Brunet, C., Storti, F., Cadet, J. P., Funiciello, R., D'Agostino, N. & Parra, T. 1998. Midcrustal shear zones in post-orogenic extension: example from the Northern Tyrrhenian Sea (Italy). Journal of Geophysical Research 103, 12123–60.Google Scholar
Knight, C. L. & Bodnar, R. J. 1989. Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H2O solutions. Geochimica Cosmochimica Acta 53, 38.Google Scholar
Lattanzi, P. 1999. Epithermal precious metal deposits of Italy-an overview. Mineralium Deposita 34, 630–8.Google Scholar
Liotta, D., Ruggieri, G., Brogi, A., Fulignati, P., Dini, A. & Nardini, I. 2009. Migration of geothermal fluids in extensional terrains: the ore deposits of the Boccheggiano-Montieri area (southern Tuscany, Italy). International Journal of Earth Sciences 99, 623–44.Google Scholar
Martarelli, L., Ferrini, V. & Masi, U. 1995. Trace-element evidence for the genesis of the pyrite vein deposit of Campiano (southern Tuscany, Italy). Periodico di Mineralogia 64, 349–66.Google Scholar
Masotti, A. & Favilli, G. 1987. Il giacimento di Campiano. L'Industria Mineraria 4, 2738.Google Scholar
Mongelli, F., Pialli, G. & Zito, G. 1998. Tectonic subsidence, heat flow and uplift in Tuscany: a new geodynamic and geothermal approach. Memorie della Società geologica Italiana 52, 275–82.Google Scholar
Moore, D. E., Hickman, S., Lockner, D. A. & Dobson, P.F. 2001. Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatran fault zone, Sumatra, Indonesia. Geological Society of America, Bulletin 113, 1179–92.Google Scholar
Moore, D. M. & Reynolds, R. C. Jr. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press, 378 pp.Google Scholar
Neuzil, C. E. 1995. Abnormal pressures as hydrodynamic phenomena. American Journal of Science 295, 742–86.Google Scholar
Okamoto, A. & Tsuchiya, N. 2009. Velocity of vertical fluid ascent within vein-forming fractures. Geology 37, 563–6.Google Scholar
Oliver, N. H. S. 1996. Review and classification of structural controls on fluid flow during regional metamorphism. Journal of Metamorphic Geology 14, 477–92.Google Scholar
Oliver, N. H. S. & Bons, P. D. 2001. Mechanisms of fluid flow and fluid–rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids 1, 137–62.Google Scholar
Oliver, N. H. S., Rubenach, M. J., Fu, B., Baker, T., Blenkinsop, T., Cleverley, J. S., Marshall, L. J. & Ridd, P. J. 2006. Granite-related overpressure and volatile release in the mid crust: fluidized breccias from the Cloncurry District, Australia. Geofluids 6, 346–58.Google Scholar
Reyes, A. 1990. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Geology 43, 279309.Google Scholar
Rimstidt, J. D. 1997. Quartz solubility at low temperatures. Geochimica Cosmochimica Acta 61, 2553–8.Google Scholar
Robert, F., Boullier, A. M. & Firdaous, K. 1995, Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical Research 100, 12861–79.Google Scholar
Roedder, E. 1984. Fluid Inclusions. Mineralogical Society of America, Reviews in Mineralogy 12.Google Scholar
Rossetti, F., Balsamo, F., Villa, I. M., Bouybaouenne, M., Faccenna, C. & Funiciello, R. 2008. Pliocene-Pleistocene high-T/low-P metamorphism during multiple granitic intrusions in the southern branch of the Larderello geothermal field (Southern Tuscany, Italy). Journal of the Geological Society, London 165, 247–62.Google Scholar
Rowland, J. V. & Sibson, R. H. 2004. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic zone, New Zealand. Geofluids 4, 259–83.Google Scholar
Ruggieri, G., Cathelineau, M., Boiron, M. C. & Marignac, C. 1999. Boiling and fluid mixing in the chlorite zone of the Larderello geothermal system. Chemical Geology 154, 237–56.Google Scholar
Ruggieri, G. & Gianelli, G. 1999. Multi-stage fluid circulation in a hydraulic fracture breccia of the Larderello geothermal field, Italy. Journal of Volcanology and Geothermal Research 90, 241–61.Google Scholar
Sharp, Z. D. 1990. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica Cosmochimica Acta 54, 1353–7.Google Scholar
Sheldon, H. A. & Ord, A. 2005. Evolution of porosity, permeability and fluid pressure in dilatant faults post-failure: implications for fluid flow and mineralization. Geofluids 5, 272–88.Google Scholar
Sibson, R. H. 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15, 701–4.Google Scholar
Sibson, R. H. 1992. Implications of fault valve behaviour from rupture nucleation and recurrence. Tectonophysics 211, 283–93.Google Scholar
Sibson, R. H. 1996. Structural permeability of fluid-driven fault fracture meshes. Journal of Structural Geology 18, 1031–42.Google Scholar
Sibson, R. H. 2000. Fluid involvement in normal faulting. Journal of Geodynamics 29, 469–99.Google Scholar
Sibson, R. H. 2004. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. Journal of Structural Geology 26, 1127–36.Google Scholar
Simmons, S. F., White, N. C. & John, D. A. 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 100thAnniversary Volume, pp. 485–522.Google Scholar
Sterner, S. M. & Bodnar, R. J. 1991. Synthetic fluid inclusions; X, Experimental determination of P-V-T-X properties in the CO2 -H2O system to 6 kb and 700°C. American Journal of Science 291, 154.Google Scholar
Streit, J. E. & Cox, S. F. 1998. Fluid infiltration and volume change during mid-crustal mylonitization of Proterozoic granite, King Island, Tasmania. Journal of Metamorphic Geology 16, 179212.Google Scholar
Tanelli, G. 1983. Mineralizzazioni metallifere e minerogenesi della Toscana (with English abstract). Memorie della Società Geologica Italiana 25, 91109.Google Scholar
Titley, S. R. 1976. Evidence for a Mesozoic linear tectonic pattern in southeastern Arizona, Arizona. Geological Society Digest 10, 71101.Google Scholar
Velde, B. 1985. Clay minerals, a physico-chemical explanation of their occurrence. Developments in Sedimentology 40, 427.Google Scholar
Villa, I. M., Ruggieri, G., Puxeddu, M. & Bertini, G. 2006. Geochronology and isotope transport systematics in a subsurface granite from the Larderello-Travale geothermal system (Italy). Journal of Geophysical Research 152, 2050.Google Scholar
Walters, R. J., Elliott, J. R., D'Agostino, N., England, P. C., Hunstad, I., Jackson, J. A., Parsons, B., Phillips, R. J. & Roberts, G. 2009. The 2009 L'Aquila earthquake (central Italy): a source mechanism and implications for seismic hazard. Geophysical Research Letters 36, L17312, doi:10.1029/2009GL039337.Google Scholar
White, N. C. & Hedenquist, J. W. 1995. Epithermal gold deposits: styles, characteristics and exploration. Society of Economic Geology Newsletter 23, 913.Google Scholar
Wilkinson, M., McCaffrey, K. J. W., Roberts, G., Cowie, P. A., Phillips, R. J., Michetti, A. M., Vittori, E., Guerrieri, L., Blumetti, A. M., Bubeck, A., Yates, A., & Sileo, G. 2010. Partitioned postseismic deformation associated with the 2009 Mw 6.3 L'Aquila earthquake surface rupture measured using a terrestrial laser scanner. Geophysical Research Letters 37, L10309, doi:10.1029/2010GL043099.Google Scholar
Supplementary material: File

Rossetti supplementary appendix

Rossetti supplementary appendix

Download Rossetti supplementary appendix(File)
File 2 MB
Supplementary material: Image

Rossetti supplementary figure 3

Rossetti supplementary figure 3

Download Rossetti supplementary figure 3(Image)
Image 6 MB