Hostname: page-component-797576ffbb-58z7q Total loading time: 0 Render date: 2023-12-03T08:25:15.078Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Foraminifera on the Demerara Rise offshore Surinam: crustal subsidence or shallowing of an oxygen minimum zone?

Published online by Cambridge University Press:  12 December 2014

Petroleum Geoscience Programme, Department of Chemical Engineering, The University of the West Indies, St Augustine, Trinidad and Tobago
Smithsonian Institution, MRC-121, P O Box 37012, Washington DC 20013-7012, USA
Author for correspondence:


The lower bathyal Ocean Drilling Program Hole 1261A was sampled near an upper Quaternary oxygen minimum zone (OMZ). Glauconite, the percentage of the foraminiferal assemblage as benthic specimens and assemblage composition were used to investigate the behaviour of the OMZ. Benthic foraminifera and glauconite were comparable with the upper margin of the modern OMZ off California. The percentage abundances of U. peregrina and C. laevigata were on the Demerara Rise negatively correlated, the proportional abundance of U. peregrina increasing upwards through the section. This reflects variations in proximity to the upper margin of the OMZ. This might reflect either crustal subsidence or long-term shallowing of the OMZ during the earlier late Quaternary. Neither hypothesis can be accepted unequivocally. The purported subsidence can be ascribed to crustal loading by the Amazon and Orinoco deep-sea fans, but this would require that the palaeodepth to the top of the OMZ remains constant across several glacial–interglacial cycles. In contrast, it is difficult to envisage any mechanism that could have caused progressive shallowing of the OMZ across several glacial–interglacial cycles. The epifaunal Planulina wuellerstorfi is related to more oxic waters and enhanced current action. This suggests that intervals with more abundant P. wuellerstorfi were somewhat less dysoxic than those with few. These intervals approximate to those with more abundant C. laevigata. Superimposed on this low-frequency signal is a higher-frequency signal, indicated by a between-sample assemblage turnover index (ATIs) that might prove useful for long-range sequence stratigraphic correlation at bathyal depths.

Original Articles
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adegoke, O. S., Omatsola, N. E. & Salami, N. B. 1976. Benthic foraminiferal biofacies off the Niger Delta. In First International Symposium on Benthic Foraminifera of Continental Margins (eds Schafer, C. T. & Pelletier, B. R.). Maritime Sediments, Special Publication 1, 279–92.Google Scholar
Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S. & Trauth, M. 1999. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon. Journal of Foraminiferal Research 29, 173–85.Google Scholar
Archer, A. W. 2005. Review of Amazonian depositional systems. In Fluvial Sedimentology VII, (eds Blum, M. D., Marriott, S. B. & Leclair, S. F.), pp. 1739. International Association of Sedimentologists, Special Publication no. 7.Google Scholar
Aslan, A., White, W. A., Warne, A. G. & Guevara, E. H. 2003. Holocene evolution of the western Orinoco Delta, Venezuela. Geological Society of America Bulletin 115, 479–98.Google Scholar
Aslanian, D., Moulin, M., Olivet, J.-L., Unternehr, P., Matias, L., Bache, F., Rabineau, M., Nouzé, H., Klingelheofer, F., Contrucci, I. & Labails, C. 2009. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics 468, 98112.Google Scholar
Balsam, W. L., Gary, A. C., Healy-Williams, N. & Williams, D. F. 1987. Time/depth distribution of Quaternary Uvigerina peregrina, North American continental margin: Morphological and paleoceanographic implications. Palaios 2, 172–77.Google Scholar
Bandy, O. L. & Arnal, R. E. 1960. Concepts of foraminiferal paleoecology. American Association of Petroleum Geologists, Bulletin 44, 1921–32.Google Scholar
Basile, C., Maillard, A., Patriat, M., Gaullier, V., Loncke, L., Roest, W., Mercier de Lépinay, M. & Pattier, F. 2013. Structure and evolution of the Demerara Plateau, offshore French Guiana: Rifting, tectonic inversion and post-rift tilting at transform–divergent margins intersection. Tectonophysics 591, 1629.Google Scholar
, A.W.H., Damuth, J. E., Lott, L. & Free, R. 1976. Late Quaternary climatic record in western equatorial Atlantic sediment. In Investigation of Late Quaternary Paleoceanography and Paleoclimatology (eds Clune, R.M. & Hays, J.D.), pp. 165200. Geological Society of America, Memoir no. 145.Google Scholar
Berger, W. H. 2013. On the Milankovich sensitivity of the deep-sea record. Climate of the Past 9, 2003–11.Google Scholar
Berger, W. H. & Parker, F. L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science 168, 1345–47.Google Scholar
Blanchon, P. & Shaw, J. 1995. Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23, 48.Google Scholar
Bornmalm, L. 1997. Taxonomy and paleoecology of late Neogene benthic foraminifera from the Caribbean Sea and eastern equatorial Pacific Ocean. Fossils and Strata 41, 196.Google Scholar
Broecker, W. S. & van Donk, J. 1970. Insolation changes, ice volumes and the O18 record in deep-sea cores. Reviews of Geophysics 8, 169–98.Google Scholar
Burnett, W. C. 1980. Apatite-glauconite associations off Peru and Chile: palaeo-oceanographic implications. Journal of the Geological Society 137, 757–64.Google Scholar
Burnett, W. C., Roe, K. K. & Piper, D. Z. 1983. Upwelling and phosphorite formation in the ocean. In Coastal Upwelling – lts Sediment Record, Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling (eds Suess, E. & Thiede, J.). pp. 377–98. New York, USA: Plenum Press.Google Scholar
Callec, Y., Deville, E., Desaubliaux, G., Griboulard, R., Huyghe, P., Mascle, A., Mascle, G., Noble, M., Padron de Carillo, C. & Schmitz, J. 2010. The Orinoco turbidite system: Tectonic controls on sea-floor morphology and sedimentation. American association of Petroleum Geologists Bulletin 94, 869–87.Google Scholar
Carvalho, F. P., Oliveira, J. M. & Soares, A. M. M. 2011. Sediment accumulation and bioturbation rates in the deep Northeast Atlantic determined by radiometric techniques. ICES Journal of Marine Science 68, 427–35.Google Scholar
Cushman, J. A. & Parker, F. L. 1931. Recent foraminifera from the Atlantic coast of South America. Proceedings of the US National Museum 87, 124.Google Scholar
Damuth, J. E. 1975. Quaternary climate change as revealed by calcium carbonate fluctuations in western equatorial Atlantic sediments. Deep-Sea Research I 22, 725–43.Google Scholar
Damuth, J. E. & Kumar, N. 1975. Late Quaternary depositional processes on continental rise of western equatorial Atlantic: comparison with western North Atlantic and implications for reservoir-rock distribution. American Association of Petroleum Geologists, Bulletin 59, 2172–81.Google Scholar
de Rijk, S., Troelstra, S. R. & Rohling, E. J. 1999. Benthic foraminiferal distribution in the Mediterranean Sea. Journal of Foraminiferal Research 29, 93103.Google Scholar
Díaz de Gamero, M. L. 1996. The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 385402.Google Scholar
Drooger, C. W. & Kaasschieter, J. P. 1958. Foraminifera of the Orinoco-Trinidad-Paria Shelf. Report of the Orinoco Shelf Expedition, Verhandlungen Koninklijk Nederland Akademie Wetenschappelijke 4, 1–108.Google Scholar
Eisma, D. 1998. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons. London, UK: Taylor and Francis (CRC Press), 545 pp.Google Scholar
Figueiredo, J., Hoorn, C., van der Ven, P. & Soares, E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 37, 619–22.Google Scholar
Fischer, A. G. & Arthur, M. A. 1977. Secular variations in the peagic realm. In Deep-Water Carbonate Environments (eds Cook, H. E. & Enos, P.), pp. 1950. Society of Economic Paleontologists and Mineralogists, Tulsa.Google Scholar
Ganssen, G. & Sarnthein, M. 1983. Stable-isotope composition of foraminifers: the surface and bottom water record of coastal upwelling. In Costal Upwelling, Its Sediment Record, Part A: Responses of the Sedimetnary Regime to Present Coastal Upwelling (eds Suess, E. & Thiede, J.), pp. 99121. New York: Plenum Press.Google Scholar
Grimsdale, T. F. & van Morkhoven, F. P. C. M. 1955. The ratio between pelagic and benthic foraminifera as a means of estimating the depth of deposition of sedimentary rocks. In Proceedings of the 4th World Petroleum Congress (Rome), Section 1/D4, pp. 473–91.Google Scholar
Gupta, A. K. 1993. Biostratigraphic vs. paleoceanographic importance of Stilostomella lepidula (Schwager) in the Indian Ocean. Micropaleontology 39, 4751.Google Scholar
Hayek, L. C. & Buzas, M. A. 2013. On the proper and efficient use of diversity measures for individual field samples. Journal of Foraminiferal Research 43, 305–13.Google Scholar
Hayek, L. C. & Wilson, B. 2013. Quantifying assemblage turnover and species contributions at ecologic boundaries. PLoS ONE 8 (10), e74999.Google Scholar
Hayward, B. W., Kawagata, S., Sabaa, A., Grenfell, H., Kerckhoven, L. V., Johnson, K. & Thomas, E. 2012. The last global extinction (Mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), their Late Cretaceous-Cenozoic history and taxonomy. Cushman Foundation for Foraminiferal Research, Special Publication 43, 1408.Google Scholar
Heine, C. & Brune, S. 2014. Oblique rifting of the Equatorial Atlantic: why there is no Saharan Atlantic Ocean. Geology 42, 211–4.Google Scholar
Hellweger, F. L. & Gordon, A. L. 2002. Tracing Amazon River water into the Caribbean Sea. Journal of Marine Research 60, 537–49.Google Scholar
Hoffmann, J., Bahr, A., Voigt, S., Schönfeld, J., Nürnberg, D. & Rethemeyer, J. 2014. Disentangling abrupt deglacial hydrological changes in northern South America: Insolation versus oceanic forcing. Geology 42, 579–82.Google Scholar
Hofker, J. 1983. Zoological exploration of the continental shelf of Surinam: the foraminifera of the shelf of Surinam and the Gyuanas. Zoologische Verhandelingen Uitgegeven door het Rijksmuseum van Natuurlijke Histoire te Leiden 201, 175.Google Scholar
Holbourn, A., Henderson, A. S. & MacLeod, N. 2013. Atlas of Benthic Foraminifera. Chichester, UK: John Wiley and Sons, 642 pp.Google Scholar
Hoorn, C., Guerrero, J., Sarmiento, G. A. & Lorente, M. A. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 234–40.Google Scholar
Hu, C., Montgomery, E. T., Schmitt, R. W. & Muller-Karger, F. E. 2004. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Research II 51, 1151–71.Google Scholar
Jones, R. W. 2014. Foraminifera and their Applications. Cambridge, UK: Cambridge University Press, 401 pp.Google Scholar
Kaiho, K. 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–22.Google Scholar
Lentz, S. J. 1995. Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. Geophysical Research 100, 2391–400.Google Scholar
Levin, L., Gutierrez, D., Rathburn, A., Neira, C., Sellanes, J., Munoz, P., Gallardo, V. & Salamanca, M. 2002. Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997–98 El Nino. Progress in Oceanography 53, 127.Google Scholar
Levin, L. & Sibuet, M. 2012. Understanding continental margin biodiversity: a new imperative. Annual Review of Marine Science 4, 79112.Google Scholar
Lutze, G. F. 1979. Benthic Foraminifera at Site 397: faunal fluctuations and ranges in the quaternary. In Initial Reports Deep Sea Drilling Project (eds von, U. Rad & Ryan, W. B. F.), 47, pp. 419–31. Washington: US Government Printing Office.Google Scholar
Manley, P. L. & Flood, R. D. 1988. Cyclic sediment deposition within Amazon deep-sea fan. American Association of Petroleum Geologists Bulletin 72, 912–25.Google Scholar
Maslin, M., Mikkelsen, N., Vilela, C. & Haq, B. 1998. Sea-level and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan. Geology 26, 1107–10.Google Scholar
McGreary, D. F. R. & Damuth, J. E. 1973. Postglacial iron-rich crusts in hemipelagic deep-sea sediment. Geological Society of America Bulletin 84, 1201–12.Google Scholar
Meade, R. H. 1994. Suspended sediments of the modern Amazon and Orinoco Rivers. Quaternary International 21, 2939.Google Scholar
Mikhalevich, V. I. 1983. The bottom foraminifera from the shelves of the tropical Atlantik. USSR Leningrad: Academy of Sciences Zoological Institute, 246 pp.Google Scholar
Milliman, J. D. & Meade, R. H. 1983. Worldwide delivery of sediment to the oceans. Journal of Geology 91, 121.Google Scholar
Mohan, K., Gupta, A. K. & Bhaumik, A. K. 2011. Distribution of deep-sea benthic foraminifera in the Neogene of Blake Ridge, NW Atlantic Ocean. Journal of Micropalaeontology 30, 2274.Google Scholar
Mullins, H. T., Thompson, J. B., McDougall, K. & Vercoutere, T. L. 1985. Oxygen-minimum zone edge effects: Evidence from the central California coastal upwelling system. Geology 13, 491–94.Google Scholar
Murray, J. W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge, UK: Cambridge University Press. 438 pp.Google Scholar
Nguyen, T. M. P. & Speijer, R. P. 2014. A new procedure to assess dissolution based on experiments on Pliocene–Quaternary foraminifera (ODP Leg 160, Eratosthenes Seamount, Eastern Mediterranean). Marine Micropaleontology 106, 2239.Google Scholar
Oba, T., Shikama, A. & Okada, H. 2000. Data report: Oxygen Isotopic record of the last 0.8 m.y. at the Blake Ridge, Site 994C. In Proceedings of the Ocean Drilling Program, Scientific Results (eds Paull, C. K., Matsumoto, R., Wallace, P. J. & Dillon, W. P.), 164, 173–5. Ocean Drilling Program, College Station, Texas.Google Scholar
Odin, G. S., Mackinnon, I. D. R. & Pujos, M. 1988. The verdine facies off French Guiana. In Green Marine Clays, Developments in Sedimentology (ed. Odin, G. S.), pp. 105–30. Amsterdam: Elsevier Science BV.Google Scholar
Okada, H. 2000. Neogene and Quaternary calcareous nannofossils from the Blake Ridge, Sites 994, 995 and 997. In Proceedings of the Ocean Drilling Program, Scientific Results (eds Paull, C. K., Matsumoto, R., Wallace, P. J. & Dillon, W. P.) 164, 331–41. Ocean Drilling Program, College Station, Texas.Google Scholar
Parrish, J. T. 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. New York: Columbia University Press, 348 pp.Google Scholar
Pascual, A., García, B. M., Lázaro, J. R. & Pujos, M. 2009. Asociaciones de foraminíferos bentónicos recientes en la plataforma marina de las Guayanas. Geogaceta 46, 75–8.Google Scholar
Perry, G. D., Duffy, P. B. & Miller, N. L. 1996. An extended data set of river discharges for validation of general circulation models. Journal of Geophysical Research 101, 21339–49.Google Scholar
Phleger, F. B. & Parker, F. L. 1951. Foraminifera species. In Ecology of Foraminifera, Northwest Gulf of Mexico. Geological Society of America, Memoir 46, 164.Google Scholar
Phleger, F. B., Parker, F. L. & Peirson, J. F. 1953. North Atlantic Foraminifera. Reports of the Swedish Deep-Sea Expedition 7 (No. 1: Sediment Cores from the North Atlantic Ocean), 1122.Google Scholar
Pirmez, C. & Imran, J. 2003. Reconstruction of turbidity currents in Amazon Channel. Marine and Petroleum Geology 20, 823–49.Google Scholar
Poag, C. W. & Valentine, P. C. 1976. Biostratigraphy and ecostratigraphy of the Pleistocene basin Texas-Louisiana continental shelf. Gulf Coast Association of Geological Societies Transactions 26, 185256.Google Scholar
Reid, R. P., Carey, S. N. & Ross, D. R. 1996. Late Quaternary sedimentation in the Lesser Antilles island arc. Geological Society of America Bulletin 108, 78100.Google Scholar
Schmiedl, G. & Mackensen, A. 1997. Late Quaternary paleoproductivity and deep water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 4380.Google Scholar
Schnitker, D. 1980. Quaternary deep-sea benthic foraminifers and bottom water masses. Annual Review of Earth and Planetary Science 8, 343–70.Google Scholar
Schoenfeld, J. 2001. Benthic foraminifera and pore-water oxygen profiles: a re-assessment of species boundary conditions at the western Iberian margin. Journal of Foraminiferal Research 31, 86107.Google Scholar
Shipboard Scientific Party. 2004. Site 1261. In Proceedings of the Ocean Drilling Program, Initial Reports (eds Erbacher, J., Mosher, D. C. & Malone, M. J.), 207, 1103. Ocean Drilling Program, College Station, Texas.Google Scholar
Smart, C. W. 2003. Environmental applications of deep-sea benthic foraminifera. In Quaternary Environmental Micropalaeontology (ed. Haslett, S. K.), pp. 1458. London, England: Hidder Headline Group.Google Scholar
Thierstein, H. R., Geitzenauer, K. R., Molfino, B. & Shackleton, N. J. 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology 5, 400–4.Google Scholar
Thomas, E., Booth, L., Maslin, M. & Shackleton, N. J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: Changes in productivity seen from the bottom up. Paleoceanography 10, 545–62.Google Scholar
van der Zwaan, G. J., Duijnstee, I. A. P., den Dulk, M., Ernst, S. R., Jannink, N. T. & Kouwenhoven, T. J. 1999. Benthic foraminifers: proxies or problems? A review of paleoecological concepts. Earth-Science Reviews 46, 213–36.Google Scholar
van der Zwaan, G. J. & Jorissen, F. J. 1991. Biofacial patterns in river-induced shelf anoxia. In Modern and Ancient Continental Shelf Anoxia (eds Tyson, R. V. & Pearson, T. H.), pp. 6582. Geological Society of London, Special Publication no. 58.Google Scholar
van der Zwaan, G. J., Jorissen, F. J. & de Stigter, H. C. 1990. The depth dependency of planktonic/benthic foraminiferal ratios: Constraints and applications. Marine Geology 95, 116.Google Scholar
van Hinsbergen, D. J. J., Kouwenhoven, T. J. & van der Zwaan, G. J. 2005. Paleobathymetry in the backstripping procedure: Correction for oxygenation effects on depth estimates. Palaeogeography, Palaeoclimatology, Palaeoecology 221, 245–65.Google Scholar
van Morkhoven, F. P. C. M., Berggren, W. A. & Edwards, A. S. 1986. Cenozoic Cosmopolitan Deep-Water Benthic Foraminifera. Bulletin Centres Recherches Exploration-Production Elf-Aquitaine 11, 1421.Google Scholar
Vercoutere, T. L., Mullins, H. T., McDougal, K. & Thompson, J. B. 1987. Sedimentation across the central California oxygen minimum zone: an alternative coastal upwelling sequence. Journal of Sedimentary Petrology 57, 709–22.Google Scholar
Vilela, C. G. 2003. Taphonomy of benthic foraminiferal tests of the Amazon Shelf. Journal of Foraminiferal Research 33, 132–43.Google Scholar
Wilson, B. 2006. Trouble in Paradise? A comparison of 1953 and 2005 benthonic foraminiferal seafloor assemblages at the Ibis Field, offshore eastern Trinidad, West Indies. Journal of Micropalaeontology 25, 157–64.Google Scholar
Wilson, B. 2010. The significance of iron-stained foraminifera off SE Trinidad, West Indies, Western Central Atlantic Ocean. Geological Magazine 147, 728–36.Google Scholar
Wilson, B. 2013. Foraminiferal biofacies in the San José Calcareous Silt Member (Manzanilla Formation, Upper Miocene to Lower Pliocene) in the Manzanilla Bay area, north-east Trinidad, and their environmental significance. Journal of South American Earth Sciences 46, 80–8.Google Scholar
Wilson, B. & Hayek, L. C. 2014. Ontology confounds reproducibility in ecology and climate science. Life: The Excitement of Biology 2, 1330.Google Scholar
Supplementary material: File

Wilson and Hayek Supplementary Material

Supplementary Material 1

Download Wilson and Hayek Supplementary Material(File)
File 122 KB
Supplementary material: File

Wilson and Hayek Supplementary Material

Supplementary Material 2

Download Wilson and Hayek Supplementary Material(File)
File 13 KB