Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T19:15:50.172Z Has data issue: false hasContentIssue false

Konservat-Lagerstätten from the Upper Jurassic lithographic limestone of the Causse Méjean (Lozère, southern France): palaeontological and palaeoenvironmental synthesis

Published online by Cambridge University Press:  17 January 2022

Jean-David Moreau*
Affiliation:
Biogéosciences, UMR CNRS 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000Dijon, France
Romain Vullo
Affiliation:
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000Rennes, France
Sylvain Charbonnier
Affiliation:
Muséum national d’Histoire naturelle, Centre de Recherche en Paléontologie – Paris (CR2P, UMR 7207), MHNN, Sorbonne Université, CNRS, 57 rue Cuvier 75005Paris, France
Romain Jattiot
Affiliation:
Fachbereich 5 Geowissenschaften, Universität Bremen, Klagenfurter Strasse 4, 28359Bremen, Germany
Vincent Trincal
Affiliation:
LMDC, Université de Toulouse, INSA/UPS, 135 avenue de Rangueil, 31077Toulouse, France
Didier Néraudeau
Affiliation:
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000Rennes, France
Emmanuel Fara
Affiliation:
Biogéosciences, UMR CNRS 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000Dijon, France
Louis Baret
Affiliation:
Association Paléontologique des Hauts Plateaux du Languedoc, 14 chemin des Ecureuils, 48000Mende, France
Alessandro Garassino
Affiliation:
Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, California, CA92350, United States of America Department of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC27601, United States of America
Georges Gand
Affiliation:
Biogéosciences, UMR CNRS 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000Dijon, France
Gérard Lafaurie
Affiliation:
10 rue Léon Baraillé, 46100Figeac, France
*
Author for correspondence: Jean-David Moreau, Email: jean.david.moreau@gmail.com

Abstract

Since the 1980s, the Upper Jurassic lithographic limestone of the Causse Méjean (southern France) has been known by local naturalists to yield fossils. However, until the beginning of the 21st century, this plattenkalk remained largely undersampled and scientifically underestimated. Here, we present the results of two decades of prospection and sampling in the Drigas and the Nivoliers quarries. We provide the first palaeontological inventory of the fossil flora, the fauna and the ichnofauna for these localities. The fossil assemblages show the co-occurrence of marine and terrestrial organisms. Marine organisms include algae, bivalves, brachiopods, cephalopods (ammonites, belemnites and coleoids such as Trachyteuthis), echinoderms, decapod crustaceans (ghost shrimps, penaeoid shrimps and glypheoid lobsters) and fishes (including several actinopterygians and a coelacanth). Terrestrial organisms consist of plant remains (conifers, bennettitaleans, pteridosperms) and a single rhynchocephalian (Kallimodon cerinensis). Ichnofossils comprise traces of marine invertebrates (e.g. limulid trackways, ammonite touch mark) as well as coprolites and regurgitalites. Given the exquisite preservation of these fossils, the two quarries can be considered as Konservat-Lagerstätten. Both lithological features and fossil content suggest a calm, protected and shallow-marine environment such as a lagoon partially or occasionally open to the sea. Most fossils are allochthonous to parautochthonous and document diverse ecological habitats. Similarly to other famous Upper Jurassic plattenkalks of western Europe such as Solnhofen, Cerin or Canjuers, the Causse Méjean is a key landmark for our understanding of coastal/lagoonal palaeoecosystems during the Kimmeridgian–Tithonian interval.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arratia, G (1987) Orthogonikleithrus leichi n. gen., n. sp. (pisces: Teleostei) from the Late Jurassic of Germany. Paläontologische Zeitschrift 61, 309–20.CrossRefGoogle Scholar
Arratia, G (1997) Basal teleosts and teleostean phylogeny. Palaeo Ichthyologica 7, 1168.Google Scholar
Arratia, G, Schultze, H-P and Tischlinger, H (2019) On a remarkable new species of Tharsis, a Late Jurassic teleostean fish from southern Germany: its morphology and phylogenetic relationships. Fossil Record 22, 123.CrossRefGoogle Scholar
Barale, G (1982) Le genre Cycadopteris Zigno au Jurassique dans l’Ouest Européen. Palaeontographica B 183, 856.Google Scholar
Barale, G (1997) Les stratégies adaptatives de quelques végétaux du Jurassique/Crétacé inférieur de la Province européenne. Geobios 30, 1722.CrossRefGoogle Scholar
Barale, G, Bernier, P, Bourseau, J-P, Buffetaut, E, Gaillard, C, Gall, J-C and Wenz, S (1985) Cerin, une lagune tropicale au temps des dinosaures. Lyon: Tixier et Fils, 136 p.Google Scholar
Barale, G and Doludenko, M (1994) Comparaisons entre les flores des localités célèbres de calcaires lithographiques S. L. du Sud-Ouest de l’Eurasie. Geobios Mémoire Spécial 16, 251–7.CrossRefGoogle Scholar
Barthel, KW, Swinburne, NHM and Conway Morris, S (1994) Solnhofen, a Study in Mesozoic Palaeontology. Cambridge: Cambridge University Press, 236 p.Google Scholar
Berger, S and Kaever, MJ (1992) Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Stuttgart: Thieme, 247 p.Google Scholar
Bernier, P, Barale, G, Bourseau, J-P, Buffetaut, E, Gaillard, C, Gall, J-C and Wenz, S (2014) The lithographic limestones of Cerin (southern Jura Mountains, France). A synthetic approach and environmental interpretation. Comptes Rendus Palevol 13, 383402.CrossRefGoogle Scholar
Bernier, P, Gaillard, C, Gall, J-C, Barale, G, Bourseau, J-P, Buffetaut, E and Wenz, S (1991) Morphogenetic impact of microbial mats on surface structures of Kimmeridgian micritic limestones (Cerin, France). Sedimentology 38, 127–36.CrossRefGoogle Scholar
Berry, EW (1918) The Jurassic lagoons of Solnhofen. The Scientific Monthly 7, 361–78.Google Scholar
Billon-Bruyat, J-P, Lécuyer, C, Martineau, F and Mazin, J-M (2005) Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodilians. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 359–75.CrossRefGoogle Scholar
Bish, DL and Post, JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. The American Mineralogist 78, 932–40.Google Scholar
Bourseau, J-P, Bernier, P, Barale, G, Buffetaut, E, Gaillard, E, Gall, J-P, Roman, J and Wenz, S (1994) Taphonomie des échinides du gisement de Cerin (Kimmeridgien supérieur, Jura méridional, France). Implications environnementales. Geobios Mémoire Spécial 16, 3747.CrossRefGoogle Scholar
Bousquet, J-C and Vianey-Liaud, M (2001) Dinosaures et Autres Reptiles du Languedoc. Montpellier: Les Presses du Languedoc, 200 p.Google Scholar
Breton, G, Carpentier, C, Huault, V and Lathuilière, B (2003) Decapod crustaceans from the Kimmeridgian of Bure (Meuse, France). Contributions to Zoology 72, 91–3.CrossRefGoogle Scholar
Brouder, P, Gèze, B, Macquar, J-C and Paloc, H (1977) Notice explicative, carte géologique au 1/50 000 de la France, feuille de Meyrueis (910). Orléans: Bureau de Recherches Géologiques et Minières, 29 p.Google Scholar
Buatois, LA, Mángano, MG, Wu, X and Zhang, G (1996) Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (central China) and their environmental and evolutionary significance. Ichnos 4, 287303.CrossRefGoogle Scholar
Carpentier, C, Breton, G, Huault, V and Lathuilière, B (2006) Crustacés décapodes du Kimméridgien de Bure (Meuse, France). Geobios 39, 617–29.CrossRefGoogle Scholar
Charbonnier, S and Garassino, A (2012) The marine arthropods from the Solnhofen Lithographic Limestones (Late Jurassic, Germany) in the collections of the Muséum national d’Histoire naturelle, Paris. Geodiversitas 34, 857–72.CrossRefGoogle Scholar
Cocude-Michel, M (1963) Les rhynchocéphales et les sauriens des calcaires lithographiques (Jurassique supérieur) d’Europe occidentale. Nouvelles Archives du Muséum d’Histoire Naturelle de Lyon 7, 1187.Google Scholar
Dercourt, J, Gaetani, M, Vrielynck, B, Barrier, E, Biju-Duval, B, Brunet, M-F, Cadet, J-P, Crasquin, S and Sandulescu, M (2000) Atlas Peri-Tethys Paleoegeographical Maps. CCGM/CGMW: Paris, 269 p.Google Scholar
Dietl, G and Schweigert, G (2004) The Nusplingen lithographic limestone-a “fossil lagerstaette” of late Kimmeridgian age from the Swabian Alb (Germany). Rivista Italiana di Paleontologia e Stratigrafia 110, 303–9.Google Scholar
Dörfliger, N, Le Strat, P, Garden, M, Blaise, M, Izac, J-L and Desprats, J-F (2006) Géologie, tectonique et géomorphologie du Causse de Sauveterre et de ses avant-causses (secteur Est), Rapport du Lot N°1 de l’Etude hydrogéologique du Causse de Sauveterre et de ses avant-causses (secteur Est), BRGM/RP-54967-FR. Orléans: Bureau de Recherches Géologiques et Minières, 167 p.Google Scholar
Ebert, M (2020) A new genus of Pycnodontidae (Actinopterygii) from the Upper Jurassic of France and Germany, included in a phylogeny of Pycnodontiformes. Zoological Journal of the Linnean Society 188, 434–54.Google Scholar
Ebert, M, Kölbl-Ebert, M and Lane, JA (2015) Fauna and predator-prey relationships of Ettling, an actinopterygian fish-dominated Konservat-Lagerstätte from the Late Jurassic of southern Germany. PLoS ONE 10, e0116140.CrossRefGoogle ScholarPubMed
Enay, R, Mangold, C, Cariou, E, Contini, D, Debrand-Passard, S, Donze, P, Gabilly, J, Lefavrais-Raymond, A, Mouterde, R and Thierry, J (1980) Synthèse paléogéographique du Jurassique français. Documents des Laboratoires de Géologie de la Faculté de Lyon 5, 1280.Google Scholar
Flügel, E (2013) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin: Springer, 976 p.Google Scholar
Förster, R (1977) Untersuchungen an jurassischen Thalassinoidea (Crustacea, Decapoda). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 17, 137–56.Google Scholar
Frickhinger, KA (1994) Die Fossilien von Solnhofen. [The fossils of Solnhofen.] Korb: Goldschneck-Verlag, 336 p.Google Scholar
Fuchs, D, Engeser, T and Keupp, H (2007) Gladius shape variation in coleoid cephalopod Trachyteuthis from the Upper Jurassic Nusplingen and Solnhofen Plattenkalks. Acta Palaeontologica Polonica 52, 575–89.Google Scholar
Fürsich, FT, Mäuser, M, Schneider, S and Werner, W (2007a) The Wattendorf Plattenkalk (Upper Kimmeridgian) – a new conservation lagerstätte from the northern Franconian Alb, southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 245, 4558.CrossRefGoogle Scholar
Fürsich, FT, Werner, W, Schneider, S and Mäuser, M (2007b) Sedimentology, taphonomy, and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 243, 92117.CrossRefGoogle Scholar
Garassino, A and Schweigert, G (2006) The Upper Jurassic Solnhofen decapod crustacean fauna: review of the types from old descriptions. Part I. Infraorders Astacidea, Thalassinidea, and Palinura. Memorie della Società italiana di Scienze naturali e del Museo civico di Storia naturale di Milano 34, 344.Google Scholar
Gastaldo, RA, Gibson, MA and Gray, TD (1989) An Appalachian deltaic sequence, northeastern Alabama, U.S.A.: biofacies-lithofacies relationships and interpreted community patterns. International Journal of Coal Geology 12, 133.CrossRefGoogle Scholar
Gèze, B, Pellet, J, Paloc, H, Bambier, A, Roux, J and Senaud, G (1980) Notice explicative, carte géologique au 1/50 000 de la France, feuille de Florac (886). Orléans: Bureau de Recherches Géologiques et Minières, 52 p.Google Scholar
Ginsburg, L (1973) Paléoécologie des calcaires lithographiques portlandiens du Petit Plan de Canjuers (Var). Comptes Rendus de l’Académie des Sciences de Paris 276, 933–4.Google Scholar
Grande, L and Bemis, WE (1998) A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of Natural History. Journal of Vertebrate Paleontology 18, 1690.CrossRefGoogle Scholar
Granier, B and Deloffre, R (1994) Inventaire des Algues Dasycladales fossiles. II° partie- Les Algues Dasycladales du Jurassique et du Crétacé. Revue de Paléobiologie 12, 1965.Google Scholar
Hantzpergue, P and Lafaurie, G (1994) Les calcaires lithographiques du Tithonien quercynois : stratigraphie, paléogéographie et contexte biosédimentaire. Geobios 16, 237–43.CrossRefGoogle Scholar
Hasiotis, ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology 167, 177268.CrossRefGoogle Scholar
Haug, JT and Haug, C (2016) “Intermetamorphic” developmental stages in 150 million-year-old achelatan lobsters – The case of the species tenera Oppel, 1862. Arthropod Structure & Development 45, 108–21.CrossRefGoogle ScholarPubMed
Hunt, AP and Lucas, SG (2012) Classification of vertebrate coprolites and related trace fossils. New Mexico Museum of Natural History and Science Bulletin 57, 137–46.Google Scholar
Knaust, D and Hoffmann, R (2020) The ichnogenus Lumbricaria Münster from the Upper Jurassic of Germany interpreted as faecal strings of ammonites. Papers in Palaeontology 7, 807–23.CrossRefGoogle Scholar
Kollmann, HA (2014) The extinct Nerineoidea and Acteonelloidea (Heterobranchia, Gastropoda): a palaeobiological approach. Geodiversitas 36, 349–83.CrossRefGoogle Scholar
Konwert, M (2016) Orthogonikleithrus francogalliensis, sp. nov. (Teleostei, Orthogonikleithridae) from the Late Jurassic Plattenkalks of Cerin (France). Journal of Vertebrate Paleontology 36(3), e1101377.CrossRefGoogle Scholar
Kriwet, J and Schmitz, L (2005) New insight into the distribution and palaeobiology of the pycnodont fish Gyrodus . Acta Palaeontologica Polonica 50, 4956.Google Scholar
Lambers, PH (1991a) The Upper Jurassic actinopterygian fish Gyrodus dichactinius Winkler, 1862 (Gyrodus hexagonus [Blainville, 1818]) from Solnhofen, Bavaria and anatomy of the genus Gyrodus Agassiz. Proceedings of the Koninklijke Nederlandse Akademie von Wetenschappen 94, 489544.Google Scholar
Lambers, PH (1991b) The identity of the type specimen of Coelacanthus harlemensis Winkler (Pisces, Actinistia) from the lithographic limestone of Solnhofen (Tithonian), Bavaria. Paläontologische Zeitschrift 65, 173–89.CrossRefGoogle Scholar
Lambers, PH (1994) The halecomorph fishes Caturus and Amblysemius in the lithographic limestone of Solnhofen (Tithonian), Bavaria. Geobios 16, 91–9.CrossRefGoogle Scholar
Lomax, DR, Falkingham, PL, Schweigert, G and Jiménez, AP (2017) An 8.5 m long ammonite drag mark from the Upper Jurassic Solnhofen Lithographic Limestones, Germany. PloS One 12, e0175426.CrossRefGoogle ScholarPubMed
Martín-Abad, H (2017) Anatomical differentiation of isolated scales from amiiform fishes (Amiiformes, Actinopterygii) from the Early Cretaceous of Las Hoyas (Cuenca, Spain). Comptes Rendus Palevol 16, 257–65.CrossRefGoogle Scholar
Mazin, J-M, Hantzpergue, P, Bassoullet, J-P, Lafaurie, G and Vignaud, P (1997) Le gisement de Crayssac (Tithonien inférieur, Quercy, Lot, France) : découverte de pistes de dinosaures en place et premier bilan ichnologique. Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Terre et des Planètes 325, 733–9.Google Scholar
Moreau, J-D, Baret, L, Lafaurie, G and Chateau-Smith, C (2016) Terrestrial plants and marine algae from the Late Jurassic lithographic limestone of the Causse Méjean (Lozère, southern France). Bulletin de la Société Géologique de France 47, 237–53.Google Scholar
Moreau, J-D, Fara, E, Gand, G, Lafaurie, G and Baret, L (2014) Gigantism among Late Jurassic limulids: new ichnological evidence from the Causses Basin (Lozère, France) and comments on body-size evolution among horseshoe crabs. Geobios 47, 237–53.CrossRefGoogle Scholar
Nel, A, Nel, P, Krieg-Jacquier, R, Pouillon, J-M and Garrouste, R (2014) Exceptionally preserved insect fossils in the Late Jurassic lagoon of Orbagnoux (Rhône Valley, France). PeerJ 2, e510.CrossRefGoogle Scholar
Nursall, JR (1996) The phylogeny of pycnodont fishes. In Mesozoic Fishes – Systematics and Paleoecology (eds Arratia, G and Viohl, G), pp. 125–52. München: Verlag Dr Friedrich Pfeil.Google Scholar
Odin, GP, Charbonnier, S, Devillez, J and Schweigert, G (2019) On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris. Geodiversitas 41, 643–62.CrossRefGoogle Scholar
Olivier, N, Pittet, B, Werner, W, Hantzpergue, P and Gaillard, C (2008) Facies distribution and coral-microbialite reef development on a low-energy carbonate ramp (Chay Peninsula, Kimmeridgian, western France). Sedimentary Geology 205, 1433.CrossRefGoogle Scholar
Peyer, K, Charbonnier, S, Allain, R, Läng, É and Vacant, R (2014) A new look at the Late Jurassic Canjuers conservation Lagerstätte (Tithonian, Var, France). Comptes Rendus Palevol 13, 403–20.CrossRefGoogle Scholar
Poyato-Ariza, FJ and Wenz, S (2002) A new insight into pycnodontiform fishes. Geodiversitas 24, 139248.Google Scholar
Rauhut, OWM and López-Arbarello, A (2016) Zur Taxonomie der Brückenechse aus dem oberen Jura von Schamhaupten. Archaeopteryx 33, 111.Google Scholar
Rauhut, OWM, Tischlinger, H and Foth, C (2019) A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. Elife 8, e43789.CrossRefGoogle ScholarPubMed
Roman, J (1994) Taphonomie des échinodermes des calcaires lithographiques de Canjuers (Tithonien inférieur, Var, France). Geobios Mémoire Spécial 16, 147–55.CrossRefGoogle Scholar
Roman, J, Atrops, F, Arnaud, M, Barale, G, Barrat, J-M, Boullier, A, Debroin, F, Gill, GA, Michard, J-G, Taquet, P and Wenz, S (1994) Le gisement tithonien inférieur des calcaires lithographiques de Canjuers (Var, France) : état actuel des connaissances. Geobios Mémoire Spécial 16, 126–35.Google Scholar
Roman, J, Vadet, A and Bouillier, A (1991) Echinoides et brachiopodes de la limite Jurassique–Crétacé à Canjuers (Var, France). Revue de Paléobiologie 10, 21–7.Google Scholar
Romano, M and Taylor, R (2019) Two previously unrecorded xiphosurid trace fossils, Selenichnites rossendalensis and Crescentichnus tesiltus, from the Middle Jurassic of Yorkshire, UK. Proceedings of the Yorkshire Geological Society 62, 254–9.CrossRefGoogle Scholar
Romano, M and Whyte, MA (2015) A review of the trace fossil Selenichnites. Proceedings of the Yorkshire Geological Society 60, 275–88.CrossRefGoogle Scholar
Saint-Seine, P de (1949) Les poissons des calcaires lithographiques de Cerin (Ain). Nouvelles Archives du Muséum d’Histoire Naturelle de Lyon 2, 1357.Google Scholar
Saporta, G de (1873) Notice sur les plantes fossiles du niveau des lits à poissons de Cerin. Lyon and Paris: Georg Libraire and Savy Libraire, 60 p.Google Scholar
Schweigert, G (2009) New genera and species of “thalassinideans” (Crustacea: Decapoda: Axiidea, Gebiidea) from the Upper Jurassic of Eichstätt and Brunn (S Germany). Archaeopteryx 27, 2130.Google Scholar
Schweigert, G, Garassino, A and Pasini, G (2016) The Upper Jurassic Solnhofen decapod crustacean fauna: Review of the types from old descriptions. Part II. Superfamily Penaeoidea and infraorder Caridea. Memorie della Societa italiana di Scienze naturali e del Museo civico di Storia naturale di Milano 49, 326.Google Scholar
Schweitzer, CE, Feldmann, RM, Garassino, A, Karasawa, H and Schweigert, G (2010) Systematic list of fossil decapod crustacean species. Crustaceana Monographs 10, 1222.Google Scholar
Sciau, J (1993) Coup d’œil sur les fossiles des causses, II-Jurassique : du Toarcien au Kimméridgien. Millau: Association des Amis du Musée de Millau, 96 p.Google Scholar
Sciau, J (1998) Dinosaures et Reptiles Marins des Causses. Millau: Association des Amis du Musée de Millau, 56 p.Google Scholar
Taylor, JC and Hinczak, I (2003) Rietveld Made Easy: A Practical Guide to the Understanding of the Method and Successful Phase Quantifications. Canberra: Sietronics Pty Ltd, 201 p.Google Scholar
Thévenard, F, Gomez, B and Daviero-Gomez, V (2005) Xeromorphic adaptations of some Mesozoic gymnosperms. A review with palaeoclimatological implications. Comptes Rendus Palevol 4, 6777.CrossRefGoogle Scholar
Thomas, P (2009) Oursins entiers et sous forme de débris dans un déchet alimentaire (type coprolithe), Kimméridgien, carrière de Cerin (Ain). Available at https://planet-terre.ens-lyon.fr/image-de-la-semaine/Img290-2009-10-26.xml (accessed 21 Dec 2021).Google Scholar
Trincal, V, Charpentier, D, Buatier, MD, Grobety, B, Lacroix, B, Labaume, BP and Sizun, J-P (2014) Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain). Marine and Petroleum Geology 55, 160–75.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, JHA (2008) The Jurassic fossil plant record of the UK area. Proceedings of the Geologists’ Association 119, 5972.CrossRefGoogle Scholar
Woodward, H (1876) On some new macrurous crustacea from the Kimmeridge Clay of the Sub-Wealden Boring, Sussex, and from Boulogne-sur-Mer. Quarterly Journal of the Geological Society 32, 4750.CrossRefGoogle Scholar