Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-4p99k Total loading time: 0.507 Render date: 2022-12-07T18:10:37.240Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya Rift (East Africa)

Published online by Cambridge University Press:  28 December 2015

CORNELIA RASMUSSEN
Affiliation:
Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, Utah 84112, USA
BETTINA REICHENBACHER*
Affiliation:
Department of Earth and Environmental Sciences, Palaeobiology & Geobiology, Ludwig-Maximilians-University Munich, Richard-Wagner-Str. 10, 80333 München, Germany
OLAF LENZ
Affiliation:
Institute of Applied Geosciences, Applied Sedimentology, Technische Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany
MELANIE ALTNER
Affiliation:
Department of Earth and Environmental Sciences, Palaeobiology & Geobiology, Ludwig-Maximilians-University Munich, Richard-Wagner-Str. 10, 80333 München, Germany
STEFANIE B. R. PENK
Affiliation:
Department of Earth and Environmental Sciences, Palaeobiology & Geobiology, Ludwig-Maximilians-University Munich, Richard-Wagner-Str. 10, 80333 München, Germany
JEROME PRIETO
Affiliation:
Department of Earth and Environmental Sciences, Palaeobiology & Geobiology, Ludwig-Maximilians-University Munich, Richard-Wagner-Str. 10, 80333 München, Germany
DENNIS BRÜSCH
Affiliation:
Institute of Applied Geosciences, Applied Sedimentology, Technische Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany
*
Author for correspondence: b.reichenbacher@lrz.uni-muenchen.de

Abstract

The Miocene epoch was a time of major change in the East African Rift System (EARS) as forest habitats were transformed into grasslands and hominids appeared in the landscape. Here we provide new sedimentological and palynological data on the middle–upper Miocene Ngorora Formation (Tugen Hills, Central Kenya Rift, EARS), together with clay mineral characterizations, mammal finds and a description of the Ngorora fish Lagerstätte. Furthermore, we introduce a revised age of c. 13.3 Ma for the onset of the Ngorora Formation. The older part of the Ngorora Formation (c. 13.3–12 Ma) records low-energy settings of lakes, floodplains and palaeosols, and evidence of analcime indicates that lakes were alkaline. The palynomorph spectrum consists of tree pollen (Juniperus, Podocarpus), Euphorbiaceae pollen (Acalypha, Croton) and herbaceous pollen of Poaceae and Asteraceae, suggestive of wooded grasslands or grassy woodlands. Alkaline lakes, floodplains and palaeosols continue upsection (c. 12–9 Ma), but environmental fluctuations become more dynamic. Paucity of palynomorphs and the presence of an equid may point to progressively drier conditions. A total of about 500 articulated fish fossils were recovered from distinctive layers of almost all sections studied and represent different lineages of the Haplotilapiines (Pseudocrenilabrinae, Cichlidae). Some of the fish kills may be attributable to rapid water acidification and/or asphyxiation by episodic ash falls. Repeated instances of abrupt change in water depth in many sections are more likely to be due to synsedimentary tectonic activity of the Central Kenya Rift than to climatic variation. Overall, the preservation of the Ngorora fish Lagerstätte resulted from the interplay of tectonics, formation of alkaline lakes and explosive volcanism. As records of grasslands that pre-date late Miocene time are rare, our finding of middle Miocene (12–13 Ma) grassy savannah in the Central Kenya Rift is also relevant to models of human evolution in East Africa.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altner, M. & Reichenbacher, B. 2015 a. †Kenyaichthyidae fam. nov. and †Kenyaichthys gen. nov. – First record of a fossil aplocheiloid killifish (Teleostei, Cyprinodontiformes). Plos One 10 (4), e0123056.CrossRefGoogle Scholar
Altner, M. & Reichenbacher, B. 2015 b. A new fossil cichlid from the Middle Miocene in the East African Rift Valley (Tugen Hills, Central Kenya): first record of a putative Ectodini. XV European Congress of Ichthyology, Abstracts 2015, 21.Google Scholar
Altner, M., Schliewen, U. & Reichenbacher, B. 2014. Exceptionally well-preserved Haplochromini-like fossils (Cichlidae: Pseudocrenilabrinae: Haplotilapiini: East African radiation) with otoliths in situ from the middle Miocene Lagerstätte Waril in the Tugen Hills (Central Kenya, East African Rift Valley). Journal of Vertebrate Paleontology, Program and Abstracts 2014, 79.Google Scholar
Anonymous 1987. Geological Map of Kenya, Scale 1:1000000. In Petroleum Exploration Project. Ministry of Energy and Regional Development, World Bank Assistance, Nairobi.Google Scholar
Arambourg, C. 1968. Un suidé fossile nouveau du Miocène supérieur de l’Afrique du nord. Bulletin de la Société Géologique de France Series 7 10, 110–15.Google Scholar
Azuma, Y., Kumazawa, Y., Miya, M., Mabuchi, K. & Nishida, M. 2008. Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evolutionary Biology 8, 215.CrossRefGoogle ScholarPubMed
Bannikov, A. F. 2004. Eocottidae, a new family of perciform fishes (Teleostei) from the Eocene of northern Italy (Bolca). Studi e Ricerche sui Giacimenti Terziari di Bolca 10, 1735.Google Scholar
Barnett, H. L. & Hunter, B. B. 1998. Illustrated genera of Imperfect Fungi, Fourth Edition. St Paul, MN: APS Press, The American Phytopathological Society, 218 pp.Google Scholar
Behrensmeyer, A. K., Deino, A. L., Hill, A., Kingston, J. D. & Saunders, J. J. 2002. Geology and geochronology of the middle Miocene Kipsaramon site complex, Muruyur Beds, Tugen Hills, Kenya. Journal of Human Evolution 42 (1–2), 1138.CrossRefGoogle ScholarPubMed
Bellwood, D. R. & Sorbini, L. 1996. A review of the fossil record of the Pomacentridae (Teleostei: Labroidei) with a description of a new genus and species from the Eocene of Monte Bolca, Italy. Zoological Journal of the Linnean Society 117 (2), 159–74.CrossRefGoogle Scholar
Bernor, R.L., Kaiser, T. & Nelson, S.V. 2004. The oldest Ethiopian Hipparion (Equinae, Perissodactyla) from Chorora: Systematics, Paleodiet and Paleoclimate. Courier Forschungsinstitut Senckenberg 246, 213–26.Google Scholar
Beyens, L., Chardez, D., De Landtsheer, R. & De Baere, D. 1986. Testate amoebae communities from aquatic habitats in the Arctic. Polar Biology 6 (4), 197205.CrossRefGoogle Scholar
Bieńkowska-Wasiluk, M. 2010. Taphonomy of Oligocene teleost fishes from the Outer Carpathians of Poland. Acta Geologica Polonica 60 (4), 479533.Google Scholar
Biscaye, P. E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin 76 (7), 803–32.CrossRefGoogle Scholar
Bishop, W. W. & Chapman, G. R. 1970. Early Pliocene sediments and fossils from the Northern Kenya Rift Valley. Nature 226, 914–8.CrossRefGoogle ScholarPubMed
Bishop, W. W., Chapman, G. R., Hill, A. & Miller, J. A. 1971. Succession of Cainozoic vertebrate assemblages from the Northern Kenya Rift Valley. Nature 233, 389–94.CrossRefGoogle ScholarPubMed
Bishop, W. W. & Pickford, M. H. L. 1975. Geology, fauna and palaeoenvironments of the Ngorora Formation, Kenya Rift Valley. Nature 254, 185–92.CrossRefGoogle Scholar
Blot, J. 1984. Proposition d’une représentation schématique des relations entre le squelette axial et le squelette interne des nageoires impaires chez les Téléostéens fossiles et actuels. Cybium 8 (4), 1930.Google Scholar
Bobe, R. & Behrensmeyer, A. K. 2004. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo . Palaeogeography, Palaeoclimatology, Palaeoecology 207 (3–4), 399420.CrossRefGoogle Scholar
Boehm, E. W. A., Mugambi, G. K., Miller, A. N., Huhndorf, S. M., Marincowitz, S., Spatafora, J. W. & Schoch, C. L. 2009. A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Studies in Mycology 64, 4983.CrossRefGoogle ScholarPubMed
Boisserie, J.-R., Souron, A., Mackaye, H. T., Likius, A., Vignaud, P. & Brunet, M. 2014. A new species of Nyanzachoerus (Cetartiodactyla: Suidae) from the late Miocene Toros-Ménalla, Chad, Central Africa. Plos One 9 (8), e103221.CrossRefGoogle ScholarPubMed
Bonnefille, R. 1984. Cenozoic vegetation and environments of early hominoids in East Africa. In The Evolution of the East Asian Environment. Vol. II. Palaeobotany, Palaeozoology and Palaeoanthropology (ed. Whyte, R. O.), pp. 579612. Hong Kong: Centre of Asian Studies.Google Scholar
Bonnefille, R. 2010. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global and Planetary Change 72 (4), 390411.CrossRefGoogle Scholar
Bonnefille, R., Vincens, A. & Buchet, G. 1987. Palynology, stratigraphy and palaeoenvironment of a pliocene hominid site (2.9–3.3 M.Y.) at Hadar, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology 60 (3–4), 249–81.CrossRefGoogle Scholar
Bovee, E. C. 1965. An ecological study of amebas from a small stream in Northern Florida. Hydrobiologia 25 (1–2), 6987.CrossRefGoogle Scholar
Brachert, T. C., Brügmann, G. B., Mertz, D. F., Kullmer, O., Schrenk, F., Jacob, D. E., Ssemmanda, I. & Taubald, H. 2010. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda. International Journal of Earth Sciences 99 (7), 1663–75.CrossRefGoogle Scholar
Carmichael, J. W., Kendrick, W. B., Conners, I. L. & Sigler, L. 1980. Genera of Hyphomycetes. Edmonton: University of Alberta Press, 386 pp.Google Scholar
Carnevale, G. & Collette, B. 2014. Zappaichthys harzhauseri gen. et sp. nov., a new Miocene toadfish (Teleostei, Batrachoidiformes) from the Paratethys (St. Margarethen in Burgenland, Austria) with comments on the fossil record of batrachoidiform fishes. Journal of Vertebrate Paleontology 34 (5), 1005–17.CrossRefGoogle Scholar
Carnevale, G. & Pietsch, T. W. 2009. An Eocene frogfish from Monte Bolca, Italy: the earliest known skeletal record for the family. Palaeontology 52 (4), 745–52.CrossRefGoogle Scholar
Carnevale, G. & Pietsch, T. W. 2010. Eocene handfishes from Monte Bolca, with description of a new genus and species, and a phylogeny of the family Brachionichthyidae (Teleostei: Lophiiformes). Zoological Journal of the Linnean Society 160 (4), 621–47.CrossRefGoogle Scholar
Casanova, J. 1986. East African Rift stromatolites. In Sedimentation in the African Rifts (eds Frostick, L. E., Renaut, R. W., Reid, I. & Tiercelin, J. J.), pp. 201–10. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific Publications.Google Scholar
Cebula, G. T., Kunk, M. J., Mehnert, H. H., Naeser, C. W., Obradovich, J. D. & Sutter, J. F. 1986. The Fish Canyon Tuff, a potential standard for the 40Ar-39Ar and Fission-track methods. Terra Cognita 6 (2), 139–40.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V. & Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–58.Google Scholar
Chamley, H. 1989. Geodynamic control on Messinian clay sedimentation in the Central Mediterranean Sea. Geo-Marine Letters 9 (3), 179–84.CrossRefGoogle Scholar
Chapman, G. R. & Brook, M. 1978. Chronostratigraphy of the Baringo Basin, Kenya. In Geological Background to Fossil Man: Recent Research in the Gregory Rift Valley, East Africa (ed. Bishop, W. W.), pp. 207–23. Geological Society, London, Special Publication no. 6.Google Scholar
Chapman, G. R., Lippard, S. J. & Martyn, J. E. 1973. Geological Map of the Northern Tugen Hills. East African Geological Research Unit, Kenya Rift Valley Project, London.Google Scholar
Chardez, D. 1964. Thécamoebians (Rhizopodes Testacés). In Exploration Hydrobiol du Bassin du Lac Bangweolo et du Luapula 10, 2 (ed. Symoens, J. J.), pp. 177. Bruxelles: Cercle Hydrobiologique de Bruxelles.Google Scholar
Chorowicz, J. 2005. The East African rift system. Journal of African Earth Sciences 43 (1–3), 379410.CrossRefGoogle Scholar
Cooke, H. B. S. & Ewer, R. F. 1972. Fossil Suidae from Kanapoi and Lothagam, Northwestern Kenya. Bulletin of the Museum of Comparative Zoology 143 (3), 149295.Google Scholar
Deino, A., Tauxe, L., Monaghan, M. & Drake, R. 1990. AR-40/AR-39 Age calibration of the litho- and paleomagnetic stratigraphies of the Ngorora Formation, Kenya. Journal of Geology 98 (4), 567–87.CrossRefGoogle Scholar
deMenocal, P. B. 2011. Climate and human evolution. Science 331 (6017), 540–42.CrossRefGoogle ScholarPubMed
Dennis, R. W. G. 1961. Xylarioideae and Thamnomycetoideae of Congo. Bulletin du Jardin Botanique de l’État à Bruxelles 31 (2), 109–54.CrossRefGoogle Scholar
Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhuber, H. J. & Kurths, J. 2011. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proceedings of the National Academy of Sciences of the United States of America 108(51), 20422–27.Google Scholar
Dunz, A. R. & Schliewen, U. K. 2013. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia. Molecular Phylogenetics and Evolution 68 (1), 6480.CrossRefGoogle ScholarPubMed
Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Kew, Surrey, UK: Commonwealth Mycological Institute, 608 pp.Google Scholar
Ellison, R. L. 1995. Paleolimnological analysis of Ullswater using testate amoebae. Journal of Paleolimnology 13 (1), 5163.CrossRefGoogle Scholar
Friedman, M., Keck, B. P., Dornburg, A., Eytan, R. I., Martin, C. H., Hulsey, C. D., Wainwright, P. C. & Near, T. J. 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings of the Royal Society B: Biological Sciences 280 (1770), 20131733.CrossRefGoogle ScholarPubMed
Frogner, P., Gíslason, S. R. & Óskarsson, N. 2001. Fertilizing potential of volcanic ash in ocean surface water. Geology 29 (6), 487–90.2.0.CO;2>CrossRefGoogle Scholar
Frogner Kockum, P. C., Herbert, R. B. & Gislason, S. R. 2006. A diverse ecosystem response to volcanic aerosols. Chemical Geology 231 (1–2), 5766.CrossRefGoogle Scholar
García Massini, J. L. & Jacobs, B. F. 2011. The effects of volcanism on Oligocene-age plant communities from the Ethiopian Plateau, and implications for vegetational resilience in a heterogeneous landscape. Review of Palaeobotany and Palynology 164 (3–4), 211–22.CrossRefGoogle Scholar
Gaudant, J. 1978. Sur les conditions de gisement de l’ichthyofaune oligocène d’Aix-en-Provence (Bouches-du-Rhône): Essai de définition d’un modèle paléoécologique et paléogéographique. Geobios 11 (3), 393–97.CrossRefGoogle Scholar
Gawthorpe, R. L. & Leeder, M. R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12 (3–4), 195218.CrossRefGoogle Scholar
Gelorini, V., Ssemmanda, I. & Verschuren, D. 2012. Validation of non-pollen palynomorphs as paleoenvironmental indicators in tropical Africa: Contrasting ~200-year paleolimnological records of climate change and human impact. Review of Palaeobotany and Palynology 186, 90101.CrossRefGoogle Scholar
Gelorini, V., Verbeken, A., van Geel, B., Cocquyt, C. & Verschuren, D. 2011. Modern non-pollen palynomorphs from East African lake sediments. Review of Palaeobotany and Palynology 164 (3–4), 143–73.CrossRefGoogle Scholar
Gierl, C., Reichenbacher, B., Gaudant, J., Erpenbeck, D. & Pharisat, A. 2013. An extraordinary gobioid fish fossil from southern France. Plos One 8 (5), e64117.CrossRefGoogle ScholarPubMed
Grande, L. 1984. Palaeontology of the Green River Formation, with a Review of the Fish Fauna. 2nd edition. Laramie, WY: Geological Survey of Wyoming, 333 pp.Google Scholar
Hanlin, R. T. 1990. Illustrated Genera of Ascomycetes, Volume I & II. St Paul, MN: The American Phytopathological Society, 263 pp.Google Scholar
Hautot, S., Tarits, P., Whaler, K., Le Gall, B., Tiercelin, J.-J. & Le Turdu, C. 2000. Deep structure of the Baringo Rift Basin (central Kenya) from three-dimensional magnetotelluric imaging: Implications for rift evolution. Journal of Geophysical Research: Solid Earth 105 (B10), 23493–518.CrossRefGoogle Scholar
Hay, R. L. 1968. Chert and its sodium-silicate precursors in sodium-carbonate lakes of East Africa. Contributions to Mineralogy and Petrology 17 (4), 255–74.CrossRefGoogle Scholar
Hellawell, J. & Orr, P. J. 2012. Deciphering taphonomic processes in the Eocene Green River Formation of Wyoming. Palaeobiodiversity and Palaeoenvironments 92 (3), 353–65.CrossRefGoogle Scholar
Hill, A. 1987. Causes of perceived faunal change in the later Neogene of East Africa. Journal of Human Evolution 16, 583–96.CrossRefGoogle Scholar
Hill, A. 2002. Paleoanthropological research in the Tugen Hills, Kenya. Journal of Human Evolution 42 (1–2), 110.CrossRefGoogle ScholarPubMed
Hill, A. & Ward, S. 1988. Origin of the hominidae: The record of african large hominoid evolution between 14 my and 4 my. Yearbook of Physical Anthropology 31 (Supplement 9), 4983.CrossRefGoogle Scholar
Jacobs, B. F. 1999. Estimation of rainfall variables from leaf characters in tropical Africa. Paleogeography, Paleoclimatology, Paleoecology 145, 231–50.CrossRefGoogle Scholar
Jacobs, B. F. 2002. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology 28 (3), 399421.2.0.CO;2>CrossRefGoogle Scholar
Jacobs, B. F. 2004. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society B: Biological Sciences 359 (1450), 1573–83.CrossRefGoogle ScholarPubMed
Jacobs, B. F. & Deino, A. L. 1996. Test of climate-leaf physiognomy regression models, their application to two Miocene floras from Kenya, and Ar-40/Ar-39 dating of the late Miocene Kapturo site. Palaeogeography, Palaeoclimatology, Palaeoecology 123 (1–4), 259–71.CrossRefGoogle Scholar
Jacobs, B. F. & Kabuye, C. H. S. 1987. A middle Miocene (12.2 my old) forest in the East African Rift Valley, Kenya. Journal of Human Evolution 16 (2), 147–55.CrossRefGoogle Scholar
Jacobs, B. F. & Kabuye, C. H. S. 1989. An extinct species of Pollia Thunberg (Commelinaceae) from the Miocene Ngorora Formation, Kenya. Review of Palaeobotany and Palynology 59 (1–4), 6776.CrossRefGoogle Scholar
Jacobs, B. F., Pan, A. D. & Scotese, C. R. 2010. A review of the Cenozoic vegetation history of Africa. In Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.), pp. 5772. Berkeley: University of California Press.CrossRefGoogle Scholar
Jacobs, B. F. & Winkler, D. A. 1992. Taphonomy of a middle Miocene autochthonous forest assemblage, Ngorora Formation, central Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology 99 (1–2), 3140.CrossRefGoogle Scholar
Jansonius, J. & Kalgutkar, R. M. 2000. Redescription of some fossil fungal spores. Palynology 24 (2000), 3747.Google Scholar
Kaiser, M. L. & Ashraf, R. 1974. Gewinnung und Präparation fossiler Pollen und Sporen sowie anderer Palynomorphae unter besonderer Berücksichtigung der Siebmethode. Geologisches Jahrbuch, Reihe A 25, 85114.Google Scholar
Kennedy, M. P., Lang, P., Grimaldo, J. T., Martins, S. V., Bruce, A., Hastie, A., Lowe, S., Ali, M. M., Sichingabula, H., Dallas, H., Briggs, J. & Murphy, K. J. 2015. Environmental drivers of aquatic macrophyte communities in southern tropical African rivers: Zambia as a case study. Aquatic Botany 124, 1928.CrossRefGoogle Scholar
King, B. C. & Chapman, G. R. 1972. Volcanism of the Kenya Rift Valley. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 271 (1213), 185208.CrossRefGoogle Scholar
Kingston, J. D., Fine Jacobs, B., Hill, A. & Deino, A. 2002. Stratigraphy, age and environments of the late Miocene Mpesida Beds, Tugen Hills, Kenya. Journal of Human Evolution 42 (1–2), 95116.CrossRefGoogle ScholarPubMed
Kingston, J. D., Marino, B. D. & Hill, A. 1994. Isotopic evidence for Neogene hominid paleoenvironments in the Kenya Rift Valley. Science 264, 955–59.CrossRefGoogle ScholarPubMed
Koblmüller, S., Egger, B., Sturmbauer, C. & Sefc, K. M. 2007. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes. Molecular Phylogenetics and Evolution 44 (3), 1295–305.CrossRefGoogle ScholarPubMed
Koblmüller, S., Sefc, K. M. & Sturmbauer, C. 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615 (1), 520.CrossRefGoogle Scholar
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R. & Wijbrans, J. R. 2008. Synchronizing rock clocks of Earth history. Science 320 (5875), 500–04.CrossRefGoogle ScholarPubMed
Lahr, D. J. G. & Lopes, S. G. B. C. 2009. Evaluating the taxonomic identity in four species of the lobose testate amoebae genus Arcella Ehrenberg, 1832. Acta Protozoologica 48 (2), 127–42.Google Scholar
Lenz, O. K., Wilde, V., Mertz, D. F. & Riegel, W. 2015. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). International Journal of Earth Sciences 104 (3), 873–89.CrossRefGoogle Scholar
Liu, H. P., McKay, R. M., Young, J. N., Witzke, B. J., McVey, K. J. & Liu, X. 2006. A new Lagerstätte from the Middle Ordovician St. Peter Formation in northeast Iowa, USA. Geology 34 (11), 969–72.Google Scholar
Lu, B.-S., Hyde, K. D. & Liew, E. C. Y. 2000. Eight new species of Anthostomella from South Africa. Mycological Research 104 (6), 742–54.CrossRefGoogle Scholar
Micklich, N. 2005. Spies into the past: Information from fossil fish. In Fourth International Meeting on Mesozoic Fishes – Systematics, Ecology, and Nomenclature (ed. Poyato-Ariza, F. J.), pp. 183–89. Madrid: Servicio de Publicaciones de la Universidad Autonoma de Madrid/UIAM Ediciones.Google Scholar
Micklich, N. 2012. Peculiarities of the Messel fish fauna and their palaeoecological implications: a case study. Palaeobiodiversity and Palaeoenvironments 92 (4), 585629.Google Scholar
Moore, D. M. & Reynolds, J. R. C. 1997. X-ray Diffraction and the Identifications and Analysis of Clay Minerals, second edition. Oxford: Oxford University Press, 400 pp.Google Scholar
Morales, J. & Pickford, M. 2008. Creodonts and carnivores from the Middle Miocene Muruyur Formation at Kipsaraman and Cheparawa, Baringo District, Kenya. Comptes Rendus Palevol 7 (8), 487–97.CrossRefGoogle Scholar
Murray, A. M. 2001. The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei). Biological Journal of the Linnean Society 74 (4), 517–32.CrossRefGoogle Scholar
Murray, A. M. & Stewart, K. M. 1999. A new species of tilapiine cichlid from the Pliocene, Middle Awash, Ethiopia. Journal of Vertebrate Paleontology 19 (2), 293301.CrossRefGoogle Scholar
Parniske, M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6 (10), 763–75.CrossRefGoogle Scholar
Payne, R. J., Lamentowicz, M., van der Knaap, W. O., van Leeuwen, J. F. N., Mitchell, E. A. D. & Mazei, Y. 2012. Testate amoebae in pollen slides. Review of Palaeobotany and Palynology 173, 6879.CrossRefGoogle Scholar
Penk, S. B. R., Rasmussen, C., Schliewen, U. & Reichenbacher, B. 2014. A new Middle Miocene Konservatlagerstätte in the Tugen Hills (Central Kenya, East African Rift Valley) reveals a unique record of fossil Haplotilapiini (Cichlidae: Pseudocrenilabrinae). Journal of Vertebrate Paleontology, Program and Abstracts 2014, 203.Google Scholar
Penk, S. B. R. & Reichenbacher, B. 2015. New record of a fossil haplotilapiine cichlid from Central Kenya. XV European Congress of Ichthyology, Abstracts 2015, 132.Google Scholar
Perrier, V., Meidla, T., Tinn, O. & Ainsaar, L. 2012. Biotic response to explosive volcanism: Ostracod recovery after Ordovician ash-falls. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 166–83.CrossRefGoogle Scholar
Petrini, L. E. 2003. Rosellinia and related genera in New Zealand. New Zealand Journal of Botany 41 (1), 71138.CrossRefGoogle Scholar
Petschick, R., Kuhn, G. & Gingele, F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology 130 (3–4), 203–29.CrossRefGoogle Scholar
Pickford, M. 1978. Geology, palaeoenvironments and vertebrate faunas of the mid-Miocene Ngoroa Formation, Kenya. In Geological Background to Fossil Man: Recent Research in the Gregory Rift Valley, East Africa (ed Bishop, W. W.), pp. 237–62. Geological Society, London, Special Publication no. 6.Google Scholar
Pickford, M. 1986. A revision of the Miocene Suidae and Tayassuidae (Artiodactyla, Mammalia) of Africa. Tertiary Research Special Paper 7, 183.Google Scholar
Pickford, M. 1988. Geology and fauna of the middle Miocene hominoid site at Muruyur, Baringo district, Kenya. Human Evolution 3 (5), 381–90.CrossRefGoogle Scholar
Pickford, M. 1990. Uplift of the Roof of Africa and its bearing on the evolution of mankind. Human Evolution 5 (1), 120.CrossRefGoogle Scholar
Pickford, M. 1994. Patterns of sedimentation and fossil distribution in the Kenya Rift Valleys. Journal of African Earth Sciences 18 (1), 5160.CrossRefGoogle Scholar
Pickford, M. 2001 a. Equidae in the Ngorora Formation, Kenya, and the first appearance of the family in East Africa. Revista Española de Paleontología 16 (2), 339–45.Google Scholar
Pickford, M. 2001 b. New species of Listriodon (Suidae, Mammalia) from Bartule, Member A, Ngorora Formation (ca 13 Ma), Tugen Hills, Kenya. Annales de Paléontologie 87 (3), 207–21.CrossRefGoogle Scholar
Pickford, M. 2002. Early miocene grassland ecosystem at Bukwa, Mount Elgon, Uganda. Comptes Rendus Palevol 1 (4), 213–9.CrossRefGoogle Scholar
Pickford, M. & Kunimatsu, Y. 2005. Catarrhines from the Middle Miocene (ca. 14.5 Ma) of Kipsaraman, Tugen Hills, Kenya. Anthropological Science 113 (2), 189224.CrossRefGoogle Scholar
Pickford, M., Sawada, Y., Tayama, R., Matsuda, Y., Itaya, T., Hyodo, H. & Senut, B. 2006. Refinement of the age of the Middle Miocene Fort Ternan Beds, Western Kenya, and its implications for Old World biochronology. Comptes Rendus Géoscience 338, 545–55.CrossRefGoogle Scholar
Pickford, M., Senut, B. & Mourer-Chauviré, U. 2004. Early Pliocene Tragulidae and peafowls in the Rift Valley, Kenya: evidence for rainforest in East Africa. Comptes Rendus Palevol 3 (3), 179–89.Google Scholar
Poll, M. 1986. Classification des Cichlidae du lac Tanganika. Tribus, genres et espèces. Académie Royale de Belgique Mémoires de la Classe des Sciences 45 (2), 1163.Google Scholar
Potts, R. 1996. Evolution and climate variability. Science 273 (5277), 922–3.CrossRefGoogle Scholar
Reinthal, P. N., Cohen, A. S. & Dettman, D. L. 2011. Fish fossils as paleo-indicators of ichthyofauna composition and climatic change in Lake Malawi, Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 303, 126–32.CrossRefGoogle Scholar
Renaut, R. W., Ego, J., Tiercelin, J.-J., Le Turdu, C. & Owen, R. B. 1999. Saline, alkaline paleolakes of the Tugen Hills-Kerio Valley region, Kenya Rift Valley. In Late Cenozoic Environments and Hominid Evolution: A Tribute to Bill Bishop (eds Andrews, P. & Banham, P.), pp. 4158. London: Geological Society.Google Scholar
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R. & Min, K. 2011. Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Renne, P.R. et al. (2010). Geochimica et Cosmochimica Acta 75 (17), 5097–100.CrossRefGoogle Scholar
Retallack, G. J. 1992. Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology 18 (4), 383400.CrossRefGoogle Scholar
Retallack, G. J. 2007. Paleosols. In Handbook of Paleoanthropology, Volume 1. Principles, Methods and Approaches (eds Henke, W. & Tattersall, I.), pp. 383408. Berlin: Springer.CrossRefGoogle Scholar
Retallack, G. J., Dugas, D. P. & Bestland, E. A. 1990. Fossil soils and grasses of a middle miocene East african grassland. Science 247 (4948), 1325–28.Google ScholarPubMed
Roberts, E. M., Stevens, N. J., O’Connor, P. M., Dirks, P. H. G. M., Gottfried, M. D., Clyde, W. C., Armstrong, R. A., Kemp, A. I. S. & Hemming, S. 2012. Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience 5 (4), 289–94.Google Scholar
Sawada, Y., Pickford, M., Senut, B., Itaya, T., Hyodo, M., Miura, T., Kashine, C., Chujo, T. & Fujii, H. 2002. The age of Orrorin tugenensis, an early hominid from the Tugen Hills, Kenya. Comptes Rendus Palevol 1 (5), 293303.Google Scholar
Schlüter, T. 2006. Geological Atlas of Africa, with Notes on Stratigraphy, Economic Geology, Geohazards and Geosites of Each Country. Berlin, Heidelberg: Springer-Verlag, xii + 272 pp.Google Scholar
Schultz, O. 1993. Der Nachweis von Scorpaena s.s. (Pisces, Teleostei) im Badenien von St. Margarethen, Burgenland, Österreich. Revision von Scorpaena prior Heckel& Kner,1861. Annalen des Naturhistorischen Museums in Wien - Serie A (Mineralogie und Petrographie, Geologie und Paläontologie, Archäozoologie, Anthropologie und Prähistorie) 95, 127–77.Google Scholar
Schultz, O. 2006 a. An anglerfish, Lophius (Osteichthyes, Euteleostei, Lophiidae), from the Leitha limestone (Badenian, Middle Miocene) of the Vienna Basin, Austria (Central Paratethys). Beiträge zur Paläontologie Österreichs 30, 427–35.Google Scholar
Schultz, O. 2006 b. Rasiermesserfische (Aeoliscus: Centriscidae, Osteichthyes) aus dem Badenium (Mittel-Miozän) von St. Margarethen im Burgenland, Österreich (Zentrale Paratethys). Annalen des Naturhistorischen Museums in Wien - Serie A (Mineralogie und Petrographie, Geologie und Paläontologie, Archäozoologie, Anthropologie und Prähistorie) 107, 7185.Google Scholar
Ségalen, L., Lee-Thorp, J. A. & Cerling, T. 2007. Timing of C4 grass expansion across sub-Saharan Africa. Journal of Human Evolution 53 (5), 549–59.CrossRefGoogle ScholarPubMed
Seilacher, A., Reif, W. E. & Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 311 (1148), 524.CrossRefGoogle Scholar
Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K. & Coppens, Y. 2001. First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de l’Académie des Sciences, Série IIA, Sciences de la Terre et des Planètes 332, 137–44.Google Scholar
Senut, B., Pickford, M. & Ségalen, L. 2009. Neogene desertification of Africa. Comptes Rendus Geoscience 341 (8–9), 591602.CrossRefGoogle Scholar
Sepulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J.-J. & Brunet, M. 2006. Tectonic uplift and eastern Africa aridification. Science 313, 1419–23.CrossRefGoogle ScholarPubMed
Shipman, P., Walker, A., Van Couvering, J. A., Hooker, P. J. & Miller, J. A. 1981. The Fort Ternan hominoid site, Kenya: Geology, age, taphonomy and paleoecology. Journal of Human Evolution 10 (1), 4972.CrossRefGoogle Scholar
Smith, H. G., Bobrov, A. & Lara, E. 2008. Diversity and biogeography of testate amoebae. Biodiversity and Conservation 17 (2), 329–43.CrossRefGoogle Scholar
Smith, M. 1994. Stratigraphic and structural constraints on mechanisms of active rifting in the Gregory Rift, Kenya. Tectonophysics 236 (1–4), 322.CrossRefGoogle Scholar
Štěpánek, M. 1963. Die Rhizopoden aus Katanga (Kongo-Afrika). Annales du Musée Royal de l’Afrique Centrale (série IN 8 Zoologie) 117, 891.Google Scholar
Stiassny, M. L. 1982. Phylogenetic versus convergent relationship between piscivorous cichlid fishes from Lakes Malawi and Tanganyika. Bulletin of the British Museum (Natural History) Zoology 40 (3), 67101.Google Scholar
Surdam, R. & Sheppard, R. 1978. Zeolites in saline, alkaline-lake deposits. In Natural Zeolites: Occurrence, Properties, Use (eds Sand, L. & Mumpton, F.), pp. 145–74. Oxford: Pergamon Press.Google Scholar
Takahashi, T. 2003. Systematics of Tanganyikan cichlid fishes (Teleostei: Perciformes). Ichthyological Research 50 (4), 367–82.Google Scholar
Tiercelin, J.-J. & Lezzar, K.-E. 2002. A 300 million years history of rift lakes in Central and East Africa: an updated broad review. In The East African Great Lakes: Limnology, Paleolimnology and Biodiversity (eds Odada, E. O. & Olago, D. O.), pp. 362. Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. 2009. Trends, rhythms and events in Plio-Pleistocene African climate. Quaternary Science Reviews 28 (5–6), 399411.CrossRefGoogle Scholar
Trauth, M. H., Maslin, M. A., Deino, A. & Strecker, M. R. 2005. Late Cenozoic moisture history of East Africa. Science 309 (5743), 2051–3.CrossRefGoogle ScholarPubMed
Trauth, M. H., Maslin, M. A., Deino, A. L., Strecker, M. R., Bergner, A. G. N. & Dühnforth, M. 2007. High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. Journal of Human Evolution 53 (5), 475–86.CrossRefGoogle ScholarPubMed
Trewavas, E. 1973. On the cichlid fishes of the genus Pelmatochromis with proposal of a new genus for P. congicus; on the relationship between Pelmatochromis and Tilapia and the recognition of Sarotheroden as a distinct genus. Bulletin of the British Museum (Natural History) Zoology 25 (1), 126.Google Scholar
Trewavas, E. 1983. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. London: British Museum of Natural History, 583 pp.CrossRefGoogle Scholar
Tyler, J. C. & Sorbini, C. 1999. Phylogeny of the fossil and recent genera of fishes of the family Scatophagidae (Squamipinnes). Bollettino del Museo Civico di Storia Naturale di Verona 23, 353–93.Google Scholar
Van Couvering, J. A. H. 1977. Early records of freshwater fishes in Africa. Copeia 1977 (1), 163–6.CrossRefGoogle Scholar
Van Couvering, J. A. H. 1982. Fossil cichlid fish of Africa. Special Papers in Paleontology 29, 1103.Google Scholar
van der Made, J. 1998. Biometrical trends in the Tetraconodontinae, a subfamily of pigs. Transactions of the Royal Society of Edinburgh: Earth Sciences 89 (3), 199225.CrossRefGoogle Scholar
van Geel, B., Gelorini, V., Lyaruu, A., Aptroot, A., Rucina, S., Marchant, R., Damsté, J. S. S. & Verschuren, D. 2011. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Review of Palaeobotany and Palynology 164 (3–4), 174–90.Google Scholar
Wall-Palmer, D., Jones, M. T., Hart, M. B., Fisher, J. K., Smart, C. W., Hembury, D. J., Palmer, M. R. & Fones, G. R. 2011. Explosive volcanism as a cause for mass mortality of pteropods. Marine Geology 282 (3–4), 231–39.CrossRefGoogle Scholar
Weiss, J. D., Cotterill, F. P. D. & Schliewen, U. K. 2015. Lake Tanganyika—a ‘melting pot’ of ancient and young cichlid lineages (Teleostei: Cichlidae)? Plos One 10 (4), e0125043.CrossRefGoogle Scholar
White, T.D., Asfaw, B., Yonas Beyene, Y., Haile-Selassie, Y., Lovejoy, O., Suwa, G. & WoldeGabriel, G. 2009. Ardipithecus ramidus and the paleobiology of early hominids. Science 326, 6486.CrossRefGoogle ScholarPubMed
Wichura, H., Bousquet, R., Oberhansli, R., Strecker, M. R. & Trauth, M. H. 2010. Evidence for middle Miocene uplift of the East African Plateau. Geology 38 (6), 543–6.CrossRefGoogle Scholar
Winkler, A. J. 2002. Neogene paleobiogeography and East African paleoenvironments: contributions from the Tugen Hills rodents and lagomorphs. Journal of Human Evolution 42 (1–2), 237–56.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (5517), 686–93.CrossRefGoogle ScholarPubMed
14
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya Rift (East Africa)
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya Rift (East Africa)
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya Rift (East Africa)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *