Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.493 Render date: 2021-02-25T20:12:14.266Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

New horseshoe crab fossil from Germany demonstrates post-Triassic extinction of Austrolimulidae

Published online by Cambridge University Press:  11 February 2021

Russell D. C. Bicknell
Affiliation:
Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
Andreas Hecker
Affiliation:
Jura Museum, 85072 Eichstätt, Germany
Alexander M. Heyng
Affiliation:
amh-Geo, 84168 Aham, Germany
Corresponding
E-mail address:

Abstract

Horseshoe crabs within Austrolimulidae represent the extreme limits to which the xiphosurid Bauplan could be modified. Recent interest in this group has uncovered an unprecedented diversity of these odd-ball xiphosurids and led to suggestions that Austrolimulidae arose during the Permian Period and had become extinct by the end of the Triassic Period. Here, we extend the temporal record of Austrolimulidae by documenting a new horseshoe crab from the Lower Jurassic (Hettangian) Bayreuth Formation, Franconiolimulus pochankei gen. et sp. nov. The novel specimen displays hypertrophied genal spines, a key feature indicative of Austrolimulidae, but does not show as prominent accentuation or reduction of other exoskeletal sections. In considering the interesting family, we explore the possible origins and explanations for the bizarre morphologies exhibited by the Austrolimulidae and present hypotheses regarding the extinction of the group. Further examination of horseshoe crab fossils with unique features will undoubtedly continue to increase the diversity and disparity of these curious xiphosurids.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Allen, JG and Feldmann, RM (2005) Panduralimulus babcocki n. gen. and sp., a new Limulacean horseshoe crab from the Permian of Texas. Journal of Paleontology 79, 594600.2.0.CO;2>CrossRefGoogle Scholar
Bauer, K, Kustatscher, E, Dütsch, G, Schmeißner, S, Krings, M and van Konijnenburg-van Cittert, JHA (2015) Lepacyclotes kirchneri n. sp. (Isoetales, Isoetaceae) aus dem unteren Jura von Oberfranken, Deutschland. Berichte der Naturwissenschaftlichen Gesellschaft Bayreuth 27, 429–43.Google Scholar
Bechly, G (2015) Fossile Libellennachweise aus Deutschland (Odonatoptera). Libellula Supplement 14, 423–64.Google Scholar
Bicknell, RDC (2019) Xiphosurid from the Upper Permian of Tasmania confirms Palaeozoic origin of Austrolimulidae. Palaeontologia Electronica 22(3), 113.Google Scholar
Bicknell, RDC, Amati, L and Ortega-Hernández, J (2019a) New insights into the evolution of lateral compound eyes in Palaeozoic horseshoe crabs. Zoological Journal of the Linnean Society 187(4), 1061–77.CrossRefGoogle Scholar
Bicknell, RDC, Błażejowski, B, Wings, O, Hitij, T and Botton, ML (in press) Critical re-evaluation of Limulidae reveals limited Limulus diversity. Papers in Palaeontology, https://doi.org/10.1002/spp2.1352CrossRefGoogle Scholar
Bicknell, RDC, Brougham, T, Charbonnier, S, Sautereau, F, Hitij, T and Campione, NE (2019b) On the appendicular anatomy of the xiphosurid Tachypleus syriacus and the evolution of fossil horseshoe crab appendages. The Science of Nature 106, 38.CrossRefGoogle ScholarPubMed
Bicknell, RDC, Klinkhamer, AJ, Flavel, RJ, Wroe, S and Paterson, JR (2018) A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus. PLoS One 13, e0191400.CrossRefGoogle ScholarPubMed
Bicknell, RDC, Lustri, L and Brougham, T (2019c) Revision of ‘Bellinuruscarteri (Chelicerata: Xiphosura) from the Late Devonian of Pennsylvania, USA. Comptes Rendus Palevol 18, 967–76.CrossRefGoogle Scholar
Bicknell, RDC, Naugolnykh, SV and Brougham, T (2020) A reappraisal of Paleozoic horseshoe crabs from Russia and Ukraine. The Science of Nature 107, 46.CrossRefGoogle ScholarPubMed
Bicknell, RDC and Pates, S (2019) Xiphosurid from the Tournaisian (Carboniferous) of Scotland confirms deep origin of Limuloidea. Scientific Reports 9, 17102.CrossRefGoogle ScholarPubMed
Bicknell, RDC and Pates, S (2020) Pictorial atlas of fossil and extant horseshoe crabs, with focus on Xiphosurida. Frontiers in Earth Science 8, 60.CrossRefGoogle Scholar
Bicknell, RDC, Pates, S and Botton, ML (2019d) Euproops danae (Belinuridae) cluster confirms deep origin of gregarious behaviour in xiphosurids. Arthropoda Selecta 28(4), 549–55.CrossRefGoogle Scholar
Bicknell, RDC, Žalohar, J, Miklavc, P, Celarc, B, Križnar, M and Hitij, T (2019 e) A new limulid genus from the Strelovec Formation (Middle Triassic, Anisian) of northern Slovenia. Geological Magazine 156, 2017–30.CrossRefGoogle Scholar
Błażejowski, B, Niedźwiedzki, G, Boukhalfa, K and Soussi, M (2017) Limulitella tejraensis, a new species of limulid (Chelicerata, Xiphosura) from the Middle Triassic of southern Tunisia (Saharan Platform). Journal of Paleontology 91, 960–67.CrossRefGoogle Scholar
Bloos, G, Dietl, G and Schweigert, G (2006) Der Jura Süddeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newsletters on Stratigraphy 41, 263–77.CrossRefGoogle Scholar
Braun, KFW (1860) Die Thiere in den Pflanzenschiefern der Gegend von Bayreuth. Jahresbericht von der König. Kreis-Landwirtschafts- und Gewerbschule zu Bayreuth für das Schuljahr 1859/60, 111.Google Scholar
Briggs, DEG, Moore, RA, Shultz, JW and Schweigert, G (2005) Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proceedings of the Royal Society of London B: Biological Sciences 272, 627–32.Google ScholarPubMed
Chen, Z-Q and Benton, MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5, 375–83.CrossRefGoogle Scholar
Desmarest, A-G (1822) Les crustacés proprement dits. In Histoire naturelle des crustacés fossiles, sous les rapports zoologiques et geologiques (eds Brongniart, A and Desmarest, A-G). pp. 67142. Paris: F-G Levrault.Google Scholar
Dix, E and Pringle, J (1929) On the fossil Xiphosura from the South Wales Coalfield with a note on the myriapod Euphoberia . Summary of Progress of the Geological Survey of Great Britain 1928(II), 90113.Google Scholar
Dunbar, CO (1923) Kansas Permian insects, Part 2, Paleolimulus, a new genus of Paleozoic Xiphosura, with notes on other genera. American Journal of Science 5, 443–54.CrossRefGoogle Scholar
Ebert, M, Kölbl-Ebert, M and Lane, JA (2015) Fauna and predator-prey relationships of Ettling, an actinopterygian fish-dominated Konservat-Lagerstätte from the Late Jurassic of Southern Germany. PLoS ONE 10, e0116140.CrossRefGoogle ScholarPubMed
Emmert, U (1977) Geologische Karte von Bayern, 1:25000, Erläuterungen zum Blatt Nr. 6035 Bayreuth. Bayerisches Geologisches Landesamt, Prinzregentenstraße 28, 8000 München 2.Google Scholar
Fischer, J, Voigt, S, Schneider, JW, Buchwitz, M and Voigt, S (2011) A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries. Journal of Vertebrate Paleontology 31, 937–53.CrossRefGoogle Scholar
Haug, C and Haug, JT (2020) Untangling the Gordian knot—further resolving the super-species complex of 300-million-year-old xiphosurids by reconstructing their ontogeny. Development Genes and Evolution 230, 1326.CrossRefGoogle ScholarPubMed
Haug, C and Rötzer, MAIN (2018) The ontogeny of the 300 million year old xiphosuran Euproops danae (Euchelicerata) and implications for resolving the Euproops species complex. Development Genes and Evolution 228, 6374.CrossRefGoogle ScholarPubMed
Haug, C, Van Roy, P, Leipner, A, Funch, P, Rudkin, DM, Schöllmann, L and Haug, JT (2012) A holomorph approach to xiphosuran evolution—a case study on the ontogeny of Euproops . Development Genes and Evolution 222, 253–68.CrossRefGoogle ScholarPubMed
Haug, JT, Haug, C, Waloszek, D and Schweigert, G (2011) The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. Swiss Journal of Geosciences 104, 8598.CrossRefGoogle Scholar
Hauschke, N (2014) Conchostraken als Zeitmarken und Faziesanzeiger in kontinentalen Ablagerungen der Trias: Fallbeispiele aus Sachsen-Anhalt und dem östlichen Niedersachsen. Abhandlungen und Berichte für Naturkunde 34, 1955.Google Scholar
Hauschke, N and Kozur, HW (2011) Two new conchostracan species from the Late Triassic of the Fuchsberg, northern foreland of the Harz Mountains northeast of Seinstedt (Lower Saxony, Germany). In Fossil Record 3 (eds Sullivan, R, Lucas, S and Spielmann, J), pp. 187–94. Albuquerque: New Mexico Museum of Natural History and Science.Google Scholar
Hauschke, N and Mertmann, D (2016) Ausgewählte Fossilfunde aus den Geologisch-Paläontologischen Sammlungen der Martin-Luther-Universität in Halle (Saale): Deutschland. der Aufschluss 67, 325–53.Google Scholar
Hauschke, N and Wilde, V (1984) Limuliden-Reste aus dem unteren Lias Frankens. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 24, 5156.Google Scholar
Hauschke, N and Wilde, V (1987) Paleolimulus fuchsbergensis n. sp. (Xiphosura, Merostomata) aus der oberen Trias von Nordwestdeutschland, mit einer Übersicht zur Systematik und Verbreitung rezenter Limuliden. Paläontologische Zeitschrift 61, 87108.CrossRefGoogle Scholar
Heymons, R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 13, 1244.Google Scholar
Hu, S-X, Zhang, Q-Y, Chen, Z-Q, Zhou, C-Y, , T, Xie, T, Wen, W, Huang, J-Y and Benton, MJ (2011) The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proceedings of the Royal Society B: Biological Sciences 278, 2274–82.CrossRefGoogle ScholarPubMed
Kin, A and Błażejowski, B (2014) The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS ONE 9, e108036.CrossRefGoogle ScholarPubMed
Knaust, D (2019) Rhizocorallites Müller, 1955 from the Triassic and Jurassic of Germany: burrow, coprolite, or cololite? PalZ 94, 769–85.Google Scholar
Koenig, CDE (1825) Icones fossilium sectiles: Centuria prima. London: GB Sowerby.CrossRefGoogle Scholar
Kohli, MK, Ware, JL and Bechly, G (2016) How to date a dragonfly: Fossil calibrations for odonates. Palaeontologia Electronica 19.1.1FC, 114.CrossRefGoogle Scholar
Kustatscher, E, Franz, M, Heunisch, C, Reich, M and Wappler, T (2014) Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiodiversity and Palaeoenvironments 94, 237–70.CrossRefGoogle Scholar
Kustatscher, E, van Konijnenburg-van Cittert, JHA, Bauer, K and Krings, M (2016) Strobilus organization in the enigmatic gymnosperm Bernettia inopinata from the Jurassic of Germany. Review of Palaeobotany and Palynology 232, 151–61.CrossRefGoogle Scholar
Lamsdell, JC (2016) Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. Palaeontology 59, 181–94.CrossRefGoogle Scholar
Lamsdell, JC (2020) A new method for quantifying heterochrony in evolutionary lineages. Paleobiology 122.CrossRefGoogle Scholar
Lamsdell, JC and McKenzie, SC (2015) Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. Organisms Diversity & Evolution 15, 681–93.CrossRefGoogle Scholar
Lamsdell, JC, Tashman, JN, Pasini, G and Garassino, A (2020) A new limulid (Chelicerata, Xiphosurida) from the Late Cretaceous (Cenomanian–Turonian) of Gara Sbaa, southeast Morocco. Cretaceous Research 106, 104230.CrossRefGoogle Scholar
Lange, W (1923) Über neue Fossilfunde aus der Trias von Göttingen. Zeitschrift der deutschen geologischen Gesellschaft 74, 162–68.Google Scholar
Latreille, PA (1802) Histoire Naturelle, Générale et Particulière, des Crustacés et des Insectes. Paris: Dufart.Google Scholar
Lerner, AJ, Lucas, SG and Lockley, M (2017) First fossil horseshoe crab (Xiphosurida) from the Triassic of North America. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 286, 289302.CrossRefGoogle Scholar
Lerner, AJ, Lucas, SG and Mansky, CF (2016) The earliest paleolimulid and its attributed ichnofossils from the Lower Mississippian (Tournaisian) Horton Bluff Formation of Blue Beach, Nova Scotia, Canada. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 280, 193214.CrossRefGoogle Scholar
Malz, H and Poschmann, M (1993) Erste Süßwasser-Limuliden (Arthropoda, Chelicerata) aus dem Rotliegenden der Saar-Nahe-Senke. Osnabrücker naturwissenschafliche Mitteilungen 19, 2124.Google Scholar
Martha, SO, Taylor, PD, Matsuyama, K and Scholz, J (2014) A brief history of misidentification and missing links: the Jurassic cyclostome Kololophos Gregory, 1896 and a new genus from the Cretaceous. In Bryozoan Studies 2013: Proceedings of the 16th International Bryozoology Association Conference, Catania, Sicily: Studi Trentini di Scienze Naturali pp. 169–79.Google Scholar
Meek, FB (1867) Notes on a new genus of fossil Crustacea. Geological Magazine 4, 320–21.Google Scholar
Meischner, K-D (1962) Neue Funde von Psammolimulus gottingensis (Merostomata, Xiphosura) aus dem Mittleren Buntsandstein von Göttingen. Paläontologische Zeitschrift 36, 185–93.CrossRefGoogle Scholar
Naugolnykh, SV (2017) Lower Kungurian shallow-water lagoon biota of Middle Cis-Urals, Russia: towards paleoecological reconstruction. Global Geology 20, 113.Google Scholar
Naugolnykh, SV (2020) Main biotic and climatic events in Early Permian of the Western Urals, Russia, as exemplified by the shallow-water biota of the early Kungurian lagoons. Palaeoworld 29, 391404.CrossRefGoogle Scholar
Odin, GP, Charbonnier, S, Devillez, J and Schweigert, G (2019) On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris. Geodiversitas 41, 643–62.CrossRefGoogle Scholar
Pickett, JW (1984) A new freshwater limuloid from the middle Triassic of New South Wales. Palaeontology 27, 609–21.Google Scholar
Presl, KB (1838) Restiarefs. In Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt (ed Strenberg, K), p. 189. Leipzig: Deutschen Museum.Google Scholar
Raymond, PE (1944) Late Paleozoic xiphosurans. Bulletin of the Museum of Comparative Zoology 94, 475508.Google Scholar
Richter, R and Richter, E (1929) Weinbergina opitzi n. g, n. sp., ein Schwertträger (Merost., Xiphos.) aus dem Devon (Rheinland). Senckenbergiana 11, 193209.Google Scholar
Riek, EF (1955) A new xiphosuran from the Triassic sediments at Brookvale, New South Wales. Records of the Australian Museum 23, 281–82.CrossRefGoogle Scholar
Rudkin, DM and Young, GA (2009) Horseshoe crabs–an ancient ancestry revealed. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, JT, Botton, ML and Smith, DR), pp. 2544. New York: Springer.CrossRefGoogle Scholar
Rudkin, DM, Young, GA and Nowlan, GS (2008) The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology 5, 19.CrossRefGoogle Scholar
Schindler, T and Poschmann, M (2012) Das jüngste Vorkommen von Pfeilschwanzkrebsen (Xiphosurida, Euproopidae) im Saar-Nahe-Becken, mit Anmerkungen zur Paläoökologie der Fundschichten (Perm, Südwestdeutschland). Mainzer Geowissenschaftliche Mitteilungen 40, 2338.Google Scholar
Schmeissner, S and Hauptmann, S (1998) Ein Blattschopf von Nilsonia acuminata (Presl) Goeppert aus dem unteren Lias Oberfrankens. Documenta naturae 117, 111.Google Scholar
Schultka, S (1994) Bellinurus cf. truemanii (Merostomata) aus dem tiefen Oberkarbon (Namur B/C) von Fröndenberg (Nordrhein-Westfalen, Deutschland). Paläontologische Zeitschrift 68, 339–49.CrossRefGoogle Scholar
Sekiguchi, K and Shuster, CN Jr (2009) Limits on the global distribution of horseshoe crabs (Limulacea): lessons learned from two lifetimes of observations: Asia and America. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, JT, Botton, ML and Smith, DR), pp. 524. Dordrecht: Springer.CrossRefGoogle Scholar
Shpinev, ES (2018) New data on Carboniferous xiphosurans (Xiphosura, Chelicerata) of the Donets Coal Basin. Paleontological Journal 52, 271–83.CrossRefGoogle Scholar
Shpinev, ES and Vasilenko, DV (2018) First fossil xiphosuran (Chelicerata, Xiphosura) egg clutch from the Carboniferous of Khakassia. Paleontological Journal 52, 400–4.CrossRefGoogle Scholar
Shuster, CN Jr (2001) Two perspectives: horseshoe crabs during 420 million years, worldwide, and the past 150 years in the Delaware Bay area. In Limulus in the Limelight (ed Tanacredi, JT), pp. 1740. New York: Springer.Google Scholar
Shuster, CN Jr and Anderson, LI (2003) A history of skeletal structure: Clues to relationships among species. In The American Horseshoe Crab (eds Shuster, CN Jr, Barlow, RB and Brockmann, HJ), pp. 154–88. Cambridge: Harvard University Press.Google Scholar
Siegfried, P (1972) Ein Schwertschwanz (Merostomata, Xiphosurida) aus dem Oberkarbon von Ibbenbüren/Westf. Paläontologische Zeitschrift 46, 180–85.CrossRefGoogle Scholar
Tashman, JN, Feldmann, RM and Schweitzer, CE (2019) Morphological variation in the Pennsylvanian horseshoe crab Euproops danae (Meek & Worthen, 1865) (Xiphosurida, Euproopidae) from the lower Mercer Shale, Windber, Pennsylvania, USA. Journal of Crustacean Biology 39, 396406.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, JHA (2010) The Early Jurassic male ginkgoalean inflorescence Stachyopitys preslii Schenk and its in situ pollen. Scripta Geologica Special Issue 7, 141–49.Google Scholar
van Konijnenburg-van Cittert, JHA and Schmeißner, S (1999) Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 152, 215–23.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, JHA, Schmeißner, S and Dütsch, G (2001) A new Rhaphidopteris from the Lower Liassic of Bavaria, Germany. Acta Palaeobotanica 41, 107–13.Google Scholar
Van Roy, P, Briggs, DEG and Gaines, RR (2015) The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. Journal of the Geological Society 172, 541–49.CrossRefGoogle Scholar
Van Roy, P, Orr, PJ, Botting, JP, Muir, LA, Vinther, J, Lefebvre, B, El Hariri, K and Briggs, DEG (2010) Ordovician faunas of Burgess Shale type. Nature 465, 215–18.CrossRefGoogle ScholarPubMed
Vía, L and De Villalta, JF (1966) Hetrolimulus gadeai, nov. gen., nov. sp., représentant d’une nouvelle famille de Limulacés dans le Trias d’Espagne. Comtes Rendues Sommaire Séances Societé Géologique France 8, 5759.Google Scholar
von Fritsch, KWG (1906) Beitrag zur Kenntnis der Tierwelt der deutschen Trias. Abhandlungen der naturforschender Gesellschaft Halle 24, 220–85.Google Scholar
Weber, R (1968) Die fossile Flora der Rhät-Lias-Übergangsschichten von Bayreuth (Oberfranken) unter besonderer Berücksichtigung der Coenologie. Erlanger Geologische Abhandlungen 72, 173.Google Scholar
Witzmann, F and Brainerd, E (2017) Modeling the physiology of the aquatic temnospondyl Archegosaurus decheni from the early Permian of Germany. Fossil Record 20, 105–27.CrossRefGoogle Scholar
Wuestefeld, P, Hilgers, C, Koehrer, B, Hoehne, M, Steindorf, P, Schurk, K, Becker, S and Bertier, P (2014) Reservoir heterogeneity in Upper Carboniferous tight gas sandstones: Lessons learned from an analog study. In SPE/EAGE European Unconventional Resources Conference and Exhibition, pp. 1–10. European Association of Geoscientists & Engineers.CrossRefGoogle Scholar
Zittel, KAv (1885) Handbuch der Palaeontologie. I. Abteilung, Palaeozoologie. München: R. Oldenbourg.Google Scholar
Zuber, M, Laaß, M, Hamann, E, Kretschmer, S, Hauschke, N, Van De Kamp, T, Baumbach, T and Koenig, T (2017) Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils. Scientific Reports 7, 41413.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 27
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between 11th February 2021 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New horseshoe crab fossil from Germany demonstrates post-Triassic extinction of Austrolimulidae
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New horseshoe crab fossil from Germany demonstrates post-Triassic extinction of Austrolimulidae
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New horseshoe crab fossil from Germany demonstrates post-Triassic extinction of Austrolimulidae
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *