Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-4x9sz Total loading time: 0.466 Render date: 2023-02-08T20:35:37.195Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

On the age of the Early/Middle Eocene boundary and other related events: cyclostratigraphic refinements from the Pyrenean Otsakar section and the Lutetian GSSP

Published online by Cambridge University Press:  03 November 2010

A. PAYROS*
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, P.O. Box 644, E-48080 Bilbao, Spain
J. DINARÈS-TURELL
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, I-00143 Rome, Italy
G. BERNAOLA
Affiliation:
Departamento de Ingeniería Minera y Metalúrgica y Ciencias de los Materiales, Escuela Universitaria de Ingeniería Técnica de Minas y Obras Públicas, University of the Basque Country, Beurko Muinoa s/n, E-48901 Barakaldo, Spain
X. ORUE-ETXEBARRIA
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, P.O. Box 644, E-48080 Bilbao, Spain
E. APELLANIZ
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, P.O. Box 644, E-48080 Bilbao, Spain
J. TOSQUELLA
Affiliation:
Departamento de Geodinámica y Paleontología, Facultas de Ciencias Experimentales, Universidad de Huelva, Campus del Carmen, Avenida Tres de Marzo s/n, E-21071 Huelva, Spain
*
Author for correspondence: a.payros@ehu.es

Abstract

An integrated bio-, magneto- and cyclostratigraphic study of the Ypresian/Lutetian (Early/Middle Eocene) transition along the Otsakar section resulted in the identification of the C22n/C21r chron boundary and of the calcareous nannofossil CP12a/b zonal boundary; the latter is the main correlation criterion of the Lutetian Global Stratotype Section and Point (GSSP) recently defined at Gorrondatxe (Basque Country). By counting precession-related mudstone–marl couplets of 21 ka, the time lapse between both events was calculated to be 819 ka. This suggests that the age of the CP12a/b boundary, and hence that of the Early/Middle Eocene boundary, is 47.76 Ma, 250 ka younger than previously thought. This age agrees with, and is supported by, estimates from Gorrondatxe based on the time lapse between the Lutetian GSSP and the C21r/C21n boundary. The duration of Chron C21r is estimated at 1.326 Ma. Given that the base of the Eocene is dated at 55.8 Ma, the duration of the Early Eocene is 8 Ma, 0.8 Ma longer than in current time scales. The Otsakar results further show that the bases of planktonic foraminiferal zones E8 and P10 are younger than the CP12a/b boundary. The first occurrence of Turborotalia frontosa, being approximately 550 ka older that the CP12a/b boundary, is the planktonic foraminiferal event that lies closest to the Early/Middle Eocene boundary. The larger foraminiferal SBZ12/13 boundary is located close to the CP12a/b boundary and correlates with Chron C21r, not with the C22n/C21r boundary.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnini, C., Muttoni, G., Kent, D. V. & Rio, D. 2006. Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: the calcareous nannofossil response to climate variability. Earth and Planetary Science Letters 241, 815–30.CrossRefGoogle Scholar
Apellaniz, A., Bernaola, G., Dinarès-Turell, J., Orue-Etxebarria, X., Payros, A. & Tosquella, J. 2009. The Ypresian/Lutetian transition in the Otsakar section (west Pyrenees): implications for the Lutetian GSSP. In Climatic and Biotic Events of the Paleogene 12–15 January 2009, Te Papa, Wellington, New Zealand (eds Strong, C. P., Crouch, E. M. & Hollis, C.), pp 94. GNS, Science Miscellaneous Series no. 16.Google Scholar
Aubry, M. P. 1983. Biostratigraphie du Paléogène épicontinental de l'Europe du Nord-Ouest: Étude fondée sur les nannofossiles calcaires. Documents des laboratoires de géologie Lyon 89, 1317.Google Scholar
Aubry, M. P., Ouda, K., Dupuis, C., Berggren, W., Van Couvering, J. A. & The Members of the Working Group on the Paleocene/Eocene Boundary 2007. The Global Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt). Episodes 30, 271–86.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III & Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M. P. & Hardenbol, J.), pp. 129212. Tulsa, USA: SEPM, Special Publication no. 54.CrossRefGoogle Scholar
Berggren, W. A. & Pearson, P. N. 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research 35, 279–98.CrossRefGoogle Scholar
Bernaola, G., Orue-Etxebarria, X., Payros, A., Dinarès-Turell, J., Tosquella, J., Apellaniz, E. & Caballero, F. 2006. Biomagnetostratigraphic analysis of the Gorrondatxe section (Basque Country, western Pyrenees): its significance for the definition of the Ypresian/Lutetian boundary stratotype. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 241, 67109.Google Scholar
Blondeau, A. 1972. Les Nummulites. Paris: Librairie Vuibert, 256 pp.Google Scholar
Bown, P. R. 1998. Calcareous Nannofossil Biostratigraphy. London: Kluwer Academic Publishers, British Micropalaeontological Society Publication Series, 315 pp.CrossRefGoogle Scholar
Bown, P. R. 2005. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33, 653–6.CrossRefGoogle Scholar
Carbayo, A., León, L. & Villalobos, L. 1978. Hoja 115 (Gulina) y memoria explicativa, Mapa Geológico de España a escala 1:50000 (serie MAGNA). Madrid: IGME, Ministerio de Industria, 61 pp.Google Scholar
Dinarès-Turell, J., Baceta, J. I., Bernaola, G., Orue-Etxebarria, X. & Pujalte, V. 2007. Closing the Mid-Paleocene gap: toward a complete astronomically tuned Paleocene Epoch and Selandian and Thanetian GSSPs at Zumaia (Basque Basin, W Pyrenees). Earth and Planetary Science Letters 262, 450–67.CrossRefGoogle Scholar
Dinarès-Turell, J., Baceta, J. I., Pujalte, V., Orue-Etxebarria, X. & Bernaola, G. 2002. Magnetostratigraphic and cyclostratigraphic calibration of a prospective Paleocene/Eocene stratotype at Zumaia (Basque Basin, northern Spain). Terra Nova 14, 371–8.CrossRefGoogle Scholar
Dinarès-Turell, J., Baceta, J. I., Pujalte, V., Orue-Etxebarria, X., Bernaola, G. & Lorito, S. 2003. Untangling the Paleocene climate: an astronomically calibrated Lower Paleocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, Northern Spain). Earth and Planetary Science Letters 216, 483500.CrossRefGoogle Scholar
Dinarès-Turell, J. & Dekkers, M. 1999. Inferred multistage diagenetic pathway for the Early Pliocene Trubi marls at Punta di Maiata (southern Sicily): paleomagnetic and rock-magnetic observations. In Palaeomagnetism and Diagenesis in Sediments (eds Tarling, D. H. & Turner, P.), pp. 5369. Geological Society of London, Special Publication no. 151.Google Scholar
Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J. C., Monechi, S., Morelli, G. & Lourens, L. 2010. Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth and Planetary Science Letters 290, 192200.CrossRefGoogle Scholar
Gibson, T. G. 1989. Planktonic benthonic foraminiferal ratios: modern patterns and Tertiary applicability. Marine Micropaleontology 15, 2952.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 589 pp.CrossRefGoogle Scholar
Grippo, A., Fischer, A. G., Hinnov, L. A., Herbert, T. & Premoli Silva, I. 2004. Cyclostratigraphy and chronology of the Albian Stage. In Cyclostratigraphy: Approaches and Case Histories (eds D'Argenio, B., Fischer, A. G., Silva, I. Premoli, Weissert, H. & Ferreri, V.), pp. 5781. Tulsa, USA: SEPM Special Publication no. 81.CrossRefGoogle Scholar
Hilgen, F., Brinkhuis, H. & Zachariasse, W. J. 2006. Unit stratotypes for global stages: the Neogene perspective. Earth-Science Reviews 74, 113–25.Google Scholar
Hottinger, L. 1977. Les foraminifères operculiniforms. Mémoires Muséum National d'Histoire Naturelle Paris 40, 1159.Google Scholar
Isuman, N. 1983. Mikropaläontologische Untersuchungen von Grosforaminiferen (Nummuliten und Assilinen) im Alttertiär von Südostspanien (Aspe und Agost in der Provinz Alicante). Berliner Geowissenchaft Abhandlungen 49, 61170.Google Scholar
Kapellos, C. & Schaub, H. 1973. Zur korrelation von biozonierungen mit grossforaminiferen und nannoplankton im Paläogen der Pyrenäen. Eclogae Geologicae Helvetiae 66, 687737.Google Scholar
Kirschvink, J. L. 1980. The least-square line and plane and analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Kodama, K. P., Anastasio, D. J., Newton, M. L., Pares, J. M. & Hinnov, L. A. 2010. High-resolution rock magnetic cyclostratigraphy in an Eocene flysch, Spanish Pyrenees. Geochemistry Geophysics Geosystems 11, Q0AA07, doi: 10.1029/2010GC003069.CrossRefGoogle Scholar
Larrasoaña, J. C., Gonzalvo, C., Molina, E., Monechi, S., Ortiz, S., Tori, F. & Tosquella, J. 2008. Integrated magnetobiochronology of the Early/Middle Eocene transition at Agost (Spain): implications for defining the Ypresian/Lutetian boundary stratotype. Lethaia 41, 395415.CrossRefGoogle Scholar
Molina, E., Alegret, L., Apellaniz, E., Bernaola, G., Caballero, F., Hardenbol, J., Heilmann-Clausen, C., Larrasoaña, J. C., Luterbacher, H., Monechi, S., Ortiz, S., Orue-Etxebarria, X., Payros, A., Pujalte, V., Rodríguez-Tovar, F. J., Tori, F. & Tosquella, J. 2009. Proposal for the Global Standard Stratotype-section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section (Spain). International Subcommission on Paleogene Stratigraphy, internal report, 44 pp.Google Scholar
Nigam, R. & Henriques, P. J. 1992. Planktonic percentage of foraminiferal fauna in surface sediments of the Arabian Sea (Indian Ocean) and a regional model for paleodepth determination. Palaeogeography, Palaeoclimatology, Palaeoecology 91, 8998.CrossRefGoogle Scholar
Okada, H. & Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology 5, 321–5.CrossRefGoogle Scholar
Orue-Etxebarria, X. 1985. Descripción de dos nuevas especies de foraminíferos planctónicos en el Eoceno costero de la provincia de Bizkaia. Revista Española de Micropaleontología 17, 467–77.Google Scholar
Orue-Etxebarria, X. & Apellaniz, E. 1985. Estudio del límite Cuisiense-Luteciense en la costa Vizcaina por medio de los foraminíferos planctónicos. Newsletters on Stratigraphy 15, 112.CrossRefGoogle Scholar
Orue-Etxebarria, X., Payros, A., Bernaola, G., Dinarès-Turell, J., Tosquella, J., Apellaniz, E. & Caballero, F. 2006. The Ypresian/Lutetian Boundary at the Gorrondatxe Beach Section (Basque Country, W Pyrenees). Bilbao: International Meeting on Climate and Biota of the Early Paleogene, 36 pp.Google Scholar
Orue-Etxebarria, X., Payros, A., Caballero, F., Molina, E., Apellaniz, E. & Bernaola, G. 2009. The Ypresian/Lutetian Transition in the Gorrondatxe Beach (Getxo, western Pyrenees): Review, Recent Advances and Future Prospects. Getxo: International Workshop on the Ypresian/Lutetian Boundary Stratotype, 215 pp.Google Scholar
Ortiz, S., Gonzalvo, C., Molina, E., Rodriguez-Tovar, F. J., Uchman, A., Vandenberghe, N. & Zeelmaekers, E. 2008. Palaeoenvironmental turnover across the Ypresian-Lutetian transition at the Agost section, southeastern Spain: in search of a marker event to define the Stratotype for the base of the Lutetian Stage. Marine Micropaleontology 69, 297313.CrossRefGoogle Scholar
Pälike, H., Shackleton, N. J. & Röhl, U. 2001. Astronomical forcing in Late Eocene marine sediments. Earth and Planetary Science Letters 193, 589602.CrossRefGoogle Scholar
Payros, A., Bernaola, G., Orue-Etxebarria, G., Dinarès-Turell, J., Tosquella, J. & Apellaniz, E. 2007. Reassessment of the Early-Middle Eocene biomagnetochronology based on evidence from the Gorrondatxe section (Basque Country, western Pyrenees). Lethaia 40, 183–95.CrossRefGoogle Scholar
Payros, A., Orue-Etxebarria, X., Bernaola, G., Apellaniz, E., Dinarès-Turell, J., Tosquella, J. & Caballero, F. 2009 a. Characterization and astronomically calibrated age of the first occurrence of Turborotalia frontosa in the Gorrondatxe section, a prospective Lutetian GSSP: implications for the Eocene time scale. Lethaia 42, 255–64.CrossRefGoogle Scholar
Payros, A., Orue-Etxebarria, X., Bernaola, G., Dinarès-Turell, J., Tosquella, J., Apellaniz, E. & Caballero, F. 2009 b. New Eocene biomagnetochronology based on the Gorrondatxe section (Basque Country, W Pyrenees): implications for the Lutetian GSSP. In The Ypresian/Lutetian Transition in the Gorrondatxe Beach (Getxo, western Pyrenees): Review, Recent Advances and Future Prospects (eds Orue-Etxebarria, X., Payros, A., Caballero, F., Molina, E., Apellaniz, E. & Bernaola, G.), pp. 203–8. Getxo: International Workshop on the Ypresian/Lutetian Boundary Stratotype.Google Scholar
Payros, A., Orue-Etxebarria, X. & Pujalte, V. 2006. Covarying sedimentary and biotic fluctuations in Lower-Middle Eocene Pyrenean deep-sea deposits: palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 258–76.CrossRefGoogle Scholar
Payros, A., Pujalte, V. & Orue-Etxebarria, X. 2003. The calciclastic members of the Eocene Anotz Formation (Navarre, W Pyrenees): example of resedimentation processes in carbonate ramp slopes. Geogaceta 34, 151–4.Google Scholar
Payros, A., Pujalte, V. & Orue-Etxebarria, X. 2007. A point-sourced calciclastic submarine fan complex (Eocene Anotz Formation, western Pyrenees): facies architecture, evolution and controlling factors. Sedimentology 54, 137–68.CrossRefGoogle Scholar
Payros, A., Tosquella, J., Bernaola, G., Dinarès-Turell, J., Orue-Etxebarria, X. & Pujalte, V. 2009 c. Filling the North European Early/Middle Eocene (Ypresian/Lutetian) boundary gap: insights from the Pyrenean continental to deep-marine record. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 313–32.CrossRefGoogle Scholar
Plaziat, J. C. 1981. Late Cretaceous to Late Eocene paleogeographic evolution of southwest Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 36, 263320.CrossRefGoogle Scholar
Premoli Silva, I. & Jenkins, D. G. 1993. Decision on the Eocene-Oligocene boundary stratotype. Episodes 16, 379–82.Google Scholar
Pujalte, V., Baceta, J. I. & Payros, A. 2002. Chapter 13: Tertiary: Western Pyrenees and Basque-Cantabrian region. In The Geology of Spain (eds Gibbons, W. & Moreno, T.), pp. 293301. London: Geological Society.Google Scholar
Pujalte, V., Robles, S., Orue-Etxebarria, X., Baceta, J. I., Payros, A. & Larruzea, I. F. 2000. Uppermost Cretaceous-Middle Eocene strata of the Basque-Cantabrian Region and western Pyrenees: a sequence stratigraphic perspective. Revista de la Sociedad Geológica de España 13, 191211.Google Scholar
Rögl, F. & Egger, H. 2010. The missing link in the evolutionary origin of the foraminiferal genus Hantkenina and the problem of the lower-middle Eocene boundary. Geology 38, 23–6.CrossRefGoogle Scholar
Roth, P. H. & Thierstein, H. 1972. Calcareous nannoplankton: Leg 14 of the Deep Sea Drilling Project. In Initial Report DSDP 14 (eds Hayes, D. E., Pimm, A. C., Beckman, J. P., Benson, W. E., Berger, W. H., Roth, P. H., Supko, P. R. & Von Rad, V.), pp. 421–85. Washington: United States Government Printing Office.Google Scholar
Schaub, H. 1981. Nummulites et Assilines de la Tethys Paléogène: taxinomie, phylogénesè et biostratigraphie. Mémoires Suisses Paleontologie 104–106, 1236.Google Scholar
Schaub, H., Benjamini, C. H. & Moshkovitz, S. 1995. The biostratigraphy of the Eocene of Israel: nummulites, planktic foraminifera and calcareous nannofossils. Mémoires Suisses Paleontologie 117, 58 pp.Google Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J. & Zakrevskaya, E. 1998. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société géologique de France 169, 281–99.Google Scholar
Tosquella, J. & Serra-Kiel, J. 1996. Los nummulítidos (Nummulites y Assilina) del Paleoceno Superior-Eoceno Inferior de la Cuenca Pirenaica: Sistemática. Acta Geológica Hispánica 31, 37159.Google Scholar
Van Der Zwaan, G. J., Jorissen, F. J. & De Stigter, H. C. 1990. The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications. Marine Geology 95, 116.CrossRefGoogle Scholar
Varol, O. 1989. Eocene calcareous nannofossils from Sile (Northwest Turkey). Revista Española de Micropaleontología 21, 273320.Google Scholar
Wade, B. S. & Pälike, H. 2004. Oligocene climate dynamics. Paleoceanography 19, PA4019, doi: 10.1029/2004PA001042.CrossRefGoogle Scholar
Westerhold, T. & Röhl, U. 2009. High resolution cyclostratigraphy of the early Eocene: new insights into the origin of the Cenozoic cooling trend. Climate of the Past 5, 309–27.CrossRefGoogle Scholar
Westerhold, T., Röhl, U., Mccarren, H. K. & Zachos, J. C. 2009. Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and -17. Earth and Planetary Science Letters 287, 412–19.CrossRefGoogle Scholar
Wissler, L., Weissert, H., Buonocunto, F. P., Ferreri, V. & D'argenio, B. 2004. Calibration of the Early Cretaceous time scale: a combined chemostratigraphic and cyclostratigraphic approach to the Barremian-Aptian interval, Campania Appenines and southern Alps (Italy). In Cyclostratigraphy: Approaches and Case Histories (eds D'Argenio, B., Fischer, A. G., Silva, I. Premoli, Weissert, H. & Ferreri, V.), pp. 123–33. Tulsa, USA: SEPM Special Publication no. 81.CrossRefGoogle Scholar
Zijderveld, J. D. A. 1967. A.C. demagnetization of rock: analysis of results. In Methods in Paleomagnetism (eds Collinson, D. W., Creer, K. M. & Runcorn, S. K..), pp. 254–86. Amsterdam: Elsevier.Google Scholar
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the age of the Early/Middle Eocene boundary and other related events: cyclostratigraphic refinements from the Pyrenean Otsakar section and the Lutetian GSSP
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On the age of the Early/Middle Eocene boundary and other related events: cyclostratigraphic refinements from the Pyrenean Otsakar section and the Lutetian GSSP
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On the age of the Early/Middle Eocene boundary and other related events: cyclostratigraphic refinements from the Pyrenean Otsakar section and the Lutetian GSSP
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *