Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-9v9hh Total loading time: 0.793 Render date: 2022-07-07T11:00:01.441Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran

Published online by Cambridge University Press:  24 June 2011

MEHRAJ AGHAZADEH
Affiliation:
Department of Geology, University of Payam Noor, Iran
ANTONIO CASTRO*
Affiliation:
Department of Geology, University of Huelva, Spain
ZAHRA BADRZADEH
Affiliation:
Department of Geology, University of Payam Noor, Iran
KATHARINA VOGT
Affiliation:
Institute of Geophysics, ETH-Zürich, Switzerland
*
Author for correspondence: dorado@uhu.es

Abstract

The petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt. This pluton is formed by intrusion at different times of two main magmatic cycles. The older (Cycle 1) is formed by calc-alkaline silicic rocks, which range in composition from diorites to granodiorites and biotite granites, with abundant mafic microgranular enclaves. The younger cycle (Cycle 2) is formed by K-rich monzodiorite and monzonite of marked shoshonitic affinity. The latter form the larger volumes of the exposed plutonic rocks in the studied complex. Zircon geochronology (laser ablation ICP-MS analyses) gives a concordia age of 30.8 ± 2.1 Ma for the calc-alkaline rocks (Cycle 1) and a range from 23.3 ± 0.5 to 25.1 ± 0.9 Ma for the shoshonitic association (Cycle 2). Major and trace element relations strongly support distinct origins for each magmatic cycle. Rocks of Cycle 1 have all the characteristic features of active continental margins. Shoshonitic rocks (Cycle 2) define two continuous fractionation trends: one departing from a K-rich basaltic composition and the other from an intermediate, K-rich composition. A metasomatized-mantle origin for the two shoshonitic series of Cycle 2 is proposed on the basis of comparisons with experimental data. The origin of the calc-alkaline series is more controversial but it can be attributed to processes in the suprasubduction mantle wedge related to the incorporation of subducted mélanges in the form of silicic cold plumes. A time sequence can be established for the processes responsible of the generation of the two magmatic cycles: first a calc-alkaline cycle typical of active continental margins, and second a K-rich cycle formed by monzonites and monzodiorites. This sequence precludes the younger potassic magmas as precursors of the older calc-alkaline series. By contrast, the older calc-alkaline magmas may represent the metasomatic agents that modified the mantle wedge during the last stages of subduction and cooked a fertile mantle region for late potassic magmatism after continental collision.

Type
PETROLOGY AND TECTONICS OF THE ZAGROS HINTERLAND
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghazadeh, M. 2006. Geological Map of the Shaivar Dagh Intrusive Complex and Adjacent Area, 1:20,000 scale. Tehran, Iran: Geological Survey of Iran.Google Scholar
Aghazadeh, M., Castro, A., Rashidnejad Omran, N., Emami, M. H., Moinvaziri, H. & Badrzadeh, Z. 2010. The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences 38, 199219.CrossRefGoogle Scholar
Ahmadian, J., Haschke, M., Mcdonald, I., Regelous, M., Ghorbani, M. H., Emami, M. H. & Murata, M. 2009. High magmatic flux during Alpine–Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin 121, 857–68.CrossRefGoogle Scholar
Ahmadzadeh, G., Jahangiri, A., Lentz, D. & Mojtahedi, M. 2010. Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. Journal of Asian Earth Sciences 39, 3750.CrossRefGoogle Scholar
Ajaji, T., Weis, D., Giret, A. & Bouabdellah, M. 1998. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos 45, 371–93.CrossRefGoogle Scholar
Alavi, M. 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.CrossRefGoogle Scholar
Alavi, M. 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics 21, 133.CrossRefGoogle Scholar
Alavi, M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 120.CrossRefGoogle Scholar
Alici, P., Temel, A., Gourgaud, A., Kieffer, G. & Gundogdu, M. N. 1998. Petrology and geochemistry of potassic rocks in the Golcuk area (Isparta, SW Turkey): genesis of enriched alkaline magmas. Journal of Volcanology and Geothermal Research 85, 423–46.CrossRefGoogle Scholar
Allen, M. B. & Armstrong, H. A. 2008. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 52–8.CrossRefGoogle Scholar
Allen, M. B., Ghassemi, M. R., Shahrabi, M. & Qorashi, M. 2003. Accommodation of late Cenozoic shortening in the Alborz range, northern Iran. Journal of Structural Geology 25, 659–72.CrossRefGoogle Scholar
Alpaslan, M., Boztug, D., Frei, R., Temel, A. & Kurt, M. A. 2006. Geochemical and Pb–Sr–Nd isotopic composition of the ultrapotassic volcanic rocks from the extension-related Çamardı-Ulukışla basin, Niğde Province, Central Anatolia, Turkey. Journal of Asian Earth Sciences 27, 613–27.CrossRefGoogle Scholar
Amidi, S. M., Emami, M. H. & Michel, R. 1984. Alkaline character of Eocene volcanism in the middle part of Iran and its geodynamic situation. Geologische Rundschau 73, 917–32.CrossRefGoogle Scholar
Annells, R. N., Arthurton, R. S., Bazley, R. A. & Davies, R. G. 1975. Explanatory Text of the Qazvin and Rasht Quadrangles Map, E3 and E4. Tehran, Iran: Geological Survey of Iran, pp. 94.Google Scholar
Azizi, H. & Moinvaziri, H. 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics 47, 167–79.CrossRefGoogle Scholar
Babakhani, A. R., Lesquyer, J. L. & Rico, R. 1990. Geological Map of Ahar Quadrangle (scale 1:250,000). Tehran, Iran: Geological Survey of Iran.Google Scholar
Bea, F., Montero, P. G., Gonzalez-Lodeiro, F. & Talavera, C. 2007. Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. Journal of Petrology 48, 2327–39.CrossRefGoogle Scholar
Bea, F., Montero, P. G., Talavera, C. & Zinger, T. 2006. A revised Ordovician age for the oldest magmatism of Central Iberia: U-Pb ion microprobe and LA-ICPMS dating of the Miranda do Douro orthogneiss. Geologica Acta 4, 395401.Google Scholar
Berberian, M. 1983. The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences 20, 163–83.CrossRefGoogle Scholar
Berberian, F. & Berberian, M. 1981. Tectono-plutonic episodes in Iran. In Zagros, Hindu Kush, Himalaya Geodynamic Evolution, vol 3 (eds Gupta, H. K. & Delany, F. M.), pp. 532. Washington, D.C.: American Geophysical Union.CrossRefGoogle Scholar
Berberian, M. & King, G. C. P. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.CrossRefGoogle Scholar
Berberian, F., Muir, I. D., Pankhurst, R. J. & Berberian, M. 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. Journal of the Geological Society, London 139, 605–14.CrossRefGoogle Scholar
Castro, A. & Gerya, T. V. 2008. Magmatic implications of mantle wedge plumes: experimental study. Lithos 103, 138–48.CrossRefGoogle Scholar
Castro, A., Gerya, T., Garcia-Casco, A., Fernandez, C., Diaz-Alvarado, J., Moreno-Ventas, I. & Löw, I. 2010. Melting relations of MORB-sediment melanges in underplated mantle wedge plumes. Implications for the origin of Cordilleran-type batholiths. Journal of Petrology 51, 1267–95.CrossRefGoogle Scholar
Conceição, R. V. & Green, D. H. 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72, 209–29.CrossRefGoogle Scholar
Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelević, D. & Venturelli, G. 2009. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 6892.CrossRefGoogle Scholar
Conticelli, S. & Peccerillo, A. 1992. Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28, 221–40.CrossRefGoogle Scholar
Dercourt, J., Zonenshain, L., Rico, L. E., Kazmin, G., Lepichon, X., Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier, C., Pechersky, D. H., Boulin, J., Sibuet, J. C, Savostin, L. A., Sorokhtin, O., Westphal, M., Bazhenov, M. L., Lauer, J. P. & Biju-Duval, B. 1986. Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123, 241315.CrossRefGoogle Scholar
Dewey, J. F. & Şengör, A. M. C. 1979. Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin 90, 8492.2.0.CO;2>CrossRefGoogle Scholar
Dilek, Y., Imamverdiyev, N. & Altunkaynak, S. 2009. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review 52, 536–78.CrossRefGoogle Scholar
Eklund, O., Konopelko, D., Rutanen, H., Frodjo, S. & Shebanov, A. D. 1998. 1.8 Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian Shield. Lithos 45, 87108.CrossRefGoogle Scholar
Elburg, M. A., Van Bergen, M., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnian, I. & Nasution, A. 2002. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta 66, 2771–89.CrossRefGoogle Scholar
Foley, S. F. & Wheller, G. E. 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanites. Chemical Geology 85, 118.CrossRefGoogle Scholar
Fowler, M. B. 1992. Elemental and O-Sr-Nd isotope geochemistry of the Glen Dessary syenite, NW Scotland. Journal of the Geological Society, London 149, 209–20.CrossRefGoogle Scholar
Fowler, M. B., Kocks, H., Darbyshire, D. P. F. & Greenwood, P. B. 2008. Petrogenesis of high Ba–Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos 105, 129–48.CrossRefGoogle Scholar
Frost, B. R., Arculus, R. J., Barenes, C. G., Collins, W. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification of granitic rock suites. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Gao, Y., Yang, Z., Hou, Z., Wei, R., Meng, X. & Tian, S. 2010. Eocene potassic and ultrapotassic volcanism in south Tibet: new constraints on mantle source characteristics and geodynamic processes. Lithos 11, 2032.CrossRefGoogle Scholar
Gerya, T. V. & Yuen, D. A. 2003. Rayleigh–Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth and Planetary Science Letters 212, 4762.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D.A. & Sevre, E. O. D. 2004. Dynamical causes for incipient magma chambers above slabs. Geology 32, 8992.CrossRefGoogle Scholar
Ghasemi, A. & Talbot, C. J. 2006. A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). Journal of Asian Earth Sciences 26, 683–93.CrossRefGoogle Scholar
Ghiorso, M. S. & Sack, R. O. 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119, 197212.CrossRefGoogle Scholar
Green, D. H. 1973. Experimental studies on a model upper mantle composition at high pressure under water-undersaturated and water-saturated conditions. Earth and Planetary Science Letters 19, 3753.CrossRefGoogle Scholar
Harris, N. B. W., Pearce, J. A., & Tindele, A. G. 1986. Geochemical characteristics of collision-zone magmatism. In Collision Tectonics (eds Coward, M. P. & Ries, A. C.), pp. 6782. Geological Society of London, Special Publication no. 19.Google Scholar
Haschke, M. & Ben-Avraham, Z. 2005. Adakites from collision-modified lithosphere. Geophysical Research Letters 32, L15302, doi:10.1029/2005GL023468, 4 pp.CrossRefGoogle Scholar
Haschke, M., Ahmadian, J., Murata, M. & McDonald, I. 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology 105, 855–65.CrossRefGoogle Scholar
Hassanzadeh, J., Ghazi, A. M., Axen, G. & Guest, B. 2002. Oligo-Miocene mafic alkaline magmatism north and northwest of Iran: evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc. Geological Society of America Abstracts with Programs 34, 331.Google Scholar
Hawkesworth, C. J., Turner, S. P., Mcdermott, F., Peate, D. W. & Van Calsteren, P. 1997. U, Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276, 551–5.CrossRefGoogle ScholarPubMed
Haynes, S. J. & McQuillan, H. 1974. Evolution of the Zagros suture zone, southern Iran. Geological Society of America Bulletin 85, 739–44.2.0.CO;2>CrossRefGoogle Scholar
Haynes, S. J. & Reynolds, P. H. 1980. Early development of Tethys and Jurassic ophiolite displacement. Nature 283, 560–3.CrossRefGoogle Scholar
Hempton, M. R. 1987. Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics 6, 687705.CrossRefGoogle Scholar
Holden, P., Halliday, A. N. & Stephens, W. E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330: 53–6.CrossRefGoogle Scholar
Homke, S., Verges, J., Garces, M., Emami, M. & Karpuz, R. 2004. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e-Kush Arc (Lurestan Province, Iran). Earth and Planetary Science Letters 225, 397410.CrossRefGoogle Scholar
Hooper, R. J., Baron, I. R., Agah, S. & Hatcher, R. D. 1994. The Cenomanian to recent development of the Southern Tethyan Margin in Iran. In Middle East Petroleum Geosciences GEO 94, vol 2 (ed. Al-Husseini, M. I.), pp. 505–16. Bahrain: Gulf PetroLink.Google Scholar
Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M. & Grove, M. 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97122.CrossRefGoogle Scholar
Jahangiri, A. 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences 30, 433–47.CrossRefGoogle Scholar
Johnson, M. C. & Rutherford, M. J. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17, 837–41.2.3.CO;2>CrossRefGoogle Scholar
Keskin, M. 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters 30, 8046, doi:10.1029/2003GL018019, 4 pp.CrossRefGoogle Scholar
Khain, V. E. 1977. Critical composition of mobilistic models of tectonic development of the Caucasus. In International Symposium of the Mediterranean Basins, Split (Yugoslavia) (eds Biju-Duval, B. & Montadert, L.), pp. 353–62.Google Scholar
Kheirkhah, M., Allen, M. B. & Emami, M. H. 2009. Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research 182, 112.CrossRefGoogle Scholar
Küster, D. & Harms, U. 1998. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Lithos 45, 177–95.CrossRefGoogle Scholar
Le Maitre, R. W. 2002. Igneous Rocks – A Classification and Glossary of Terms. Cambridge: Cambridge University Press, 236 pp.CrossRefGoogle Scholar
López-Moro, F. J. & López-Plaza, M. 2004. Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos 72, 1944.CrossRefGoogle Scholar
McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letters 30, 2036, doi:10.1029/2003GL017992, 4 pp.CrossRefGoogle Scholar
Mohajjel, M. & Fergusson, C. L. 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, Western Iran. Journal of Structural Geology 22, 1125–39.CrossRefGoogle Scholar
Mohajjel, M., Fergusson, C. L. & Sahandi, M. R. 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences 4, 397412.CrossRefGoogle Scholar
Montero, P., Bea, F., Gonzalez-Lodeiro, F., Talavera, C. & Whitehouse, M. 2007. Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geological Magazine 144, 963–76.CrossRefGoogle Scholar
Morimoto, N. 1988. Nomenclature of pyroxenes. Mineralogy and Petrology 66, 237–52.Google Scholar
Morrison, G. W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos 13, 97108.CrossRefGoogle Scholar
Niida, K. & Green, D. H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology 135, 1840.CrossRefGoogle Scholar
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. & Jolivet, L. 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–98.CrossRefGoogle Scholar
Pearce, J. A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.), pp. 230–50. Nantwich, Cheshire, UK: Shiva.Google Scholar
Pearce, J. A., Bender, J. F. & De Long, S. E. 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44, 189229.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pearce, J. A. & Parkinson, I. J. 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 373403. Geological Society of London, Special Publication no. 76.Google Scholar
Philip, H., Cisternas, A., Gvishiani, A. & Gorshkov, A. 1989. The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics 161, 121.CrossRefGoogle Scholar
Pitcher, W. S. 1997. The Nature and Origin of Granite. London: Blackie, 321 pp.CrossRefGoogle Scholar
Ricou, L. E. 1994. Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta 7, 169218.CrossRefGoogle Scholar
Robertson, A. H. F. 2000. Mesozoic–Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 97138. Geological Society of London, Special Publication no. 173.Google Scholar
Scarrow, J. H., Molina, J. F., Bea, F. & Montero, P. 2009. Within-plate calc-alkaline rocks: insights from alkaline mafic magma-peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos 110, 5064.CrossRefGoogle Scholar
Schmidt, M. W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110, 304–10.CrossRefGoogle Scholar
Şengör, A. M. C. & Kidd, W. S. F. 1979. Post-collisional tectonics of the Turkish–Iranian plateau and a comparison with Tibet. Tectonophysics 55, 361–76.CrossRefGoogle Scholar
Şengör, A. M. C. & Natal'in, B. A. 1996. Paleotectonics of Asia: fragments of the synthesis. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.), pp. 486640. Cambridge: Cambridge University Press.Google Scholar
Shafiei, B., Haschke, M. & Shahabpour, J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44, 265–83.CrossRefGoogle Scholar
Shahabpour, J. 2007. Island arc affinity of the central Iranian belt. Journal Asian Earth Science 30, 652–65.CrossRefGoogle Scholar
Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. 2010. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–29.CrossRefGoogle Scholar
Stampfli, G. M. 2000. Tethyan oceans. In Tectonics and Magmatism in Turkey and Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 123. Geological Society of London, Special Publication no. 173.Google Scholar
Stampfli, G., Marcoux, J. & Baud, A. 1991. Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 373409.CrossRefGoogle Scholar
Stephens, W. E. & Halliday, A. N. 1984. Geochemical contrasts between late Caledonian granitoid plutons of northern, central and southern Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 75, 259–73.CrossRefGoogle Scholar
Stocklin, J. 1974. Possible ancient continental margins in Iran. In The Geology of Continental Margins (eds Burk, C. A., & Drake, C. L.), pp. 873–87. Berlin: Springer.CrossRefGoogle Scholar
Stoneley, R. 1981. The geology of the Kuh-e Dalneshim area of southern Iran, and its bearing on the evolution of southern Tethys. Journal of the Geological Society, London 138, 509–26.CrossRefGoogle Scholar
Takin, M. 1972. Iranian geology and continental drift in the Middle East. Nature 23, 147–50.CrossRefGoogle Scholar
Tatsumi, Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research 94, 4697–707.CrossRefGoogle Scholar
Thompson, A. B. 1992. Water in the Earth's upper mantle. Nature 358: 295.CrossRefGoogle Scholar
Topuz, G., Altherr, R., Schwarz, W. H., Siebel, W., Satir, M. & Dokuz, A. 2005. Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey). Contributions to Mineralogy and Petrology 150, 441–55.CrossRefGoogle Scholar
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawesworth, C., Harris, N., Kelley, S., Van Calsteren, P. & Deng, W. 1996. Postcollision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 37, 4571.CrossRefGoogle Scholar
Venturelli, G., Thorpe, R. S., Dal Piaz, G. V., Del Moro, A. & Potts, P. J. 1984. Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology 86, 209–20.CrossRefGoogle Scholar
Wang, Q., Li, J. W., Jian, P., Zhao, Z. H., Xiong, X. L., Bao, Z. W., Xu, J. F., Li, C. F. & Ma, J. L. 2005 a. Alkaline syenites in eastern Cathaysia (South China): link to Permian–Triassic transtension. Earth and Planetary Science Letters 230, 339–54.CrossRefGoogle Scholar
Wang, Q., Mcdermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. 2005 b. Cenozoic K-rich adakitic volcanics in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology 33, 465–8.CrossRefGoogle Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., Bao, Z. W., Li, C. F. & Bai, Z. H. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu-Au mineralization. Lithos 89, 424–46.CrossRefGoogle Scholar
Wang, Q., Xu, J. F., Zhao, Z. H., Bao, Z. W., Xu, W. & Xiong, X. L. 2004 a. Cretaceous high-potassium intrusive rocks in the Yueshan–Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal 38, 417–34.CrossRefGoogle Scholar
Wang, Q., Zhao, Z. H., Bao, Z. W., Xu, J. F., Liu, W. & Li, C. F. 2004 b. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resource Geology 54, 137–52.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–4.CrossRefGoogle ScholarPubMed
Williams, H. M., Turner, S. P., Pearce, J. A., Kelley, S. P. & Harris, N. B. W. 2004. Nature of the source regions for postcollisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. Journal of Petrology 45, 555607.CrossRefGoogle Scholar
Xiao, L. & Clemens, J. D. 2007. Origin of potassic (C-type) adakite magmas: experimental and field constraints. Lithos 95, 399414.CrossRefGoogle Scholar
Xu, J. F., Shinjio, R., Defant, M. J., Wang, Q. & Rapp, R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 12, 1111–14.2.0.CO;2>CrossRefGoogle Scholar
Yang, J. H., Chung, S. L., Wilde, S. A., Wu, F. Y., Chu, M. F., Lo, C. H. & Fan, H. R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology 214, 99125.CrossRefGoogle Scholar
Yilmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin 105, 251–71.2.3.CO;2>CrossRefGoogle Scholar
Zindler, A. & Hart, S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Supplementary material: PDF

Aghazadeh Online Appendix 1

Aghazadeh Online Appendix 1

Download Aghazadeh Online Appendix 1(PDF)
PDF 3 MB
Supplementary material: PDF

Aghazadeh Online Appendix 2

Aghazadeh Online Appendix 2

Download Aghazadeh Online Appendix 2(PDF)
PDF 611 KB
78
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *