Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-662rr Total loading time: 0.932 Render date: 2022-05-23T10:32:28.928Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A tale of two extinctions: converging end-Permian and end-Triassic scenarios

Published online by Cambridge University Press:  26 October 2015

BAS VAN DE SCHOOTBRUGGE*
Affiliation:
Marine Palynology & Paleoceanography, Institute of Earth Sciences, Utrecht University, Utrecht, Heidelberglaan 2, 3584 CS, The Netherlands
PAUL B. WIGNALL
Affiliation:
School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
*
Author for correspondence: B.vanderSchootbrugge@uu.nl

Abstract

The end-Permian (c. 252 Ma) and end-Triassic (c. 201 Ma) mass-extinction events are commonly linked to the emplacement of the large igneous provinces of the Siberia Traps and Central Atlantic Magmatic Province, respectively. Accordingly, scenarios for both extinctions are increasingly convergent and cross-fertilization of ideas has become important. Here, we present a synthesis of extinction scenarios based on a critical assessment of the available palaeontological, sedimentological, geochemical and geophysical evidence. How similar were the extinction events, what gaps exist in our understanding and how can a comparison of the events enhance our understanding of each event individually? Our focus is on the most important proximate kill mechanisms including: climate change and atmospheric pollution; increased soil erosion, weathering and runoff; forest dieback and the spread of pathogens; and ocean temperature changes, anoxia and acidification. There is substantial evidence to suggest that very similar kill mechanisms acted upon late Permian as well as Late Triassic ecosystems, strengthening the hypothesis that the ultimate causes of the mass-extinction events were similar.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Chen, Z. Q., Fraiser, M. L. & Twitchett, R. J. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 111.CrossRefGoogle Scholar
Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. & Maynard, J. B. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 6583.CrossRefGoogle Scholar
Algeo, T. J. & Twitchett, R. J. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–6.CrossRefGoogle Scholar
Archer, D. 2005. Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research 110, C09S05.CrossRefGoogle Scholar
Bachan, A. & Payne, J. L. 2015. Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic-Jurassic transition. Geological Magazine, published online 8 June 2015. doi: 10.1017/S0016756815000126. Google Scholar
Bachan, A., van de Schootbrugge, B., Fiebig, J., McRoberts, C. A., Ciarapica, G. & Payne, J. L. 2012. Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ13Ccarb and δ13Corg records. Geochemistry, Geophysics, Geosystems 13, Q09008.CrossRefGoogle Scholar
Bachan, A., van de Schootbrugge, B. & Payne, J. L. 2014. The end-Triassic negative δ13C excursion: a lithologic test. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 177–86.CrossRefGoogle Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34, 127–55.CrossRefGoogle Scholar
Bartiromo, A., Guignard, G., Barone Lumaga, M. R., Barattolo, F., Chiodini, G., Avino, R., Guerriero, G. & Barale, G. 2012. Influence of volcanic gases on the epidermis of Pinus halepensis Mill. in Campi Flegrei, Southern Italy: A possible tool for detecting volcanism in present and past floras. Journal of Volcanology and Geothermal Research 233–234, 117.CrossRefGoogle Scholar
Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. 2003. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302, 1388–92.CrossRefGoogle ScholarPubMed
Baud, A., Richoz, S. & Marcoux, J. 2005. Calcimicrobial cap rocks from the basal Triassic units: western Taurus occurrences (SW Turkey). Comptes Rendu Palevol 4, 501–14.CrossRefGoogle Scholar
Becker, L., Poreda, R. J., Basu, A. R., Pope, K. O., Harrison, T. M., Nicholson, C. & Iasky, R. 2004. Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304, 1469–76.CrossRefGoogle ScholarPubMed
Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. 2001. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–3.CrossRefGoogle ScholarPubMed
Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. 2007. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 365, 1843–66.CrossRefGoogle ScholarPubMed
Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J. & McElwain, J. C. 2010. Increased fire risk associated with global warming across the Triassic–Jurassic boundary. Nature Geoscience 3, 426–9.CrossRefGoogle Scholar
Benton, M. J. 1986. More than one event in the Late Triassic mass-extinction. Nature 321, 857–61.CrossRefGoogle Scholar
Benton, M. J. & Newell, A. J. 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research 25, 1308–37.CrossRefGoogle Scholar
Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. 2004. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97100.CrossRefGoogle ScholarPubMed
Benton, M. J. & Twitchett, R. J. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology and Evolution 18, 358–65.CrossRefGoogle Scholar
Bice, D. M., Newton, C. R., McCauley, S. E., Reiners, P. W. & McRoberts, C. A. 1992. Shocked quartz at the Triassic-Jurassic boundary in Italy. Science 255, 443–6.CrossRefGoogle ScholarPubMed
Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. 2013. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 6770.CrossRefGoogle Scholar
Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, E. T. & Et-Touhami, M. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340, 941–4.CrossRefGoogle ScholarPubMed
Böhme, M., Gregor, H.-J. & Heissig, K. 2002. The Ries and Steinheim meteorite impacts and their effect on the environmental conditions in time and space. In Geological and Biological Effects of Impact Events (eds Buffetaut, F. & Koeberl, C.), pp. 217–35. Heidelberg: Springer.CrossRefGoogle Scholar
Bond, D. P. G. & Wignall, P. B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122, 1265–79.CrossRefGoogle Scholar
Bond, D. P. G. & Wignall, P. B. 2014. Large igneous provinces and mass-extinctions: an update. In Volcanism, Impacts, and Mass-Extinctions (eds Keller, G. & Kerr, A. C.), pp. 3056. Boulder: Geological Society of America.Google Scholar
Bonis, N. R., Kürschner, W. M. & Krystyn, L. 2009. A detailed palynological study of the Triassic-Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Review of Palaeobotany and Palynology 156, 376400.CrossRefGoogle Scholar
Bonis, N. R., Ruhl, M. & Kürschner, W. M. 2010. Milankovitch-scale palynological turnover across the Triassic-Jurassic transition at St Audrie´s Bay, SW UK. Journal of the Geological Society of London 167, 877–88.CrossRefGoogle Scholar
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K. & Wang, W. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280, 1039–45.CrossRefGoogle ScholarPubMed
Bricker, O. P. & Rice, K. C. 1993. Acid rain. Annual Review of Earth and Planetary Sciences 21, 151–74.CrossRefGoogle Scholar
Burgess, S., Bowring, S. & Shen, S. Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Science 111, 3316–21.Google Scholar
Callegaro, S., Baker, D. R., De Min, A., Marzoli, A., Geraki, K., Betrand, H., Viti, C. & Nestola, F. 2014. Microanalyses link sulfur from large igneous provinces and Mesozoic mass-extinctions. Geology 42, 895–8.CrossRefGoogle Scholar
Cao, C. Q., Love, G. D., Hays, L. E., Wang, W. & Shen, S. Z. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass-extinction event. Earth and Planetary Science Letters 281, 188201.CrossRefGoogle Scholar
Cao, H. 1989. Air pollution and its effects on plants in China. Journal of Applied Ecology 26, 763–73.Google Scholar
Chakraborty, S., Tiedemann, A. V. & Teng, P. S. 2000. Climate change: potential impact on plant diseases. Environmental Pollution 108, 317–26.CrossRefGoogle ScholarPubMed
Chenet, A.-L., Fluteau, F. & Courtillot, V. 2005. Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth and Planetary Science Letters 236, 721–31.CrossRefGoogle Scholar
Ciarapica, G. 2007. Regional and global changes around the Triassic-Jurassic boundary reflected in the late Norian-Hettangian history of the Apennine basins. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 3451.CrossRefGoogle Scholar
Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N., Jourdan, F., Bellieni, G., Kontak, D. & Renne, P. R. 2009. Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints. Earth and Planetary Science Letters 286, 514–25.CrossRefGoogle Scholar
Clarkson, M. O., Kasemann, S. A., Wood, R. A., Lenton, T. M., Daines, S. J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S. W. & Tipper, E. T. 2015. Ocean acidification and the Permo-Triassic mass-extinction. Science 348, 229–32.CrossRefGoogle ScholarPubMed
Cobbold, P. R. & Rodrigues, N. 2007. Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’ and ‘cone-in-cone’). Geofluids 7, 313–22.CrossRefGoogle Scholar
Cobbold, P. R., Zanella, A., Rodrigues, N. & Løseth, H. 2013. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization. Marine and Petroleum Geology 43, 120.CrossRefGoogle Scholar
Courtillot, V. 1994. Mass extinctions in the last 300 million years: one impact and seven flood basalts. Israel Journal of Earth Sciences 43, 255–66.Google Scholar
Crne, A. E., Weissert, H., Gorican, S. & Bernasconi, S. M. 2010. A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro). Geological Society of America Bulletin 123, 4050.CrossRefGoogle Scholar
Dal Corso, J., Marzoli, A., Tateo, F., Jenkyns, H. C., Bertrand, H., Youbi, N., Mahmoudi, A., Font, E., Buratti, N. & Cirilli, S. 2014. The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. Journal of the Geological Society of London 171, 153–64.CrossRefGoogle Scholar
Deconinck, J.-F., Hesselbo, S. P., Debuisser, N., Averbuch, O., Baudin, F. & Bessa, J. 2003. Environmental controls on clay mineralogy of an Early Jurassic mudrock (Blue Lias Formation, southern England). International Journal of Earth Sciences 92, 255–66.Google Scholar
Diaz, R. J. & Rosenberg, R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–9.CrossRefGoogle ScholarPubMed
Elliott-Kingston, C., Haworth, M. & McElwain, J. C. 2014. Damage structures in leaf epidermis and cuticle as an indicator of elevated atmospheric sulphur dioxide in early Mesozoic floras. Review of Palaebotany and Palynology 208, 2542.CrossRefGoogle Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press.Google Scholar
Eshet, Y., Rampino, M. R. & Visscher, H. 1995. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23, 967–70.2.3.CO;2>CrossRefGoogle Scholar
Evans, L. S. 1984. Acidic precipitation effects on terrestrial vegetation. Annual Review of Phytopathology 22, 397420.CrossRefGoogle Scholar
Foster, C. B. & Afonin, S. A. 2005. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian-Triassic boundary. Journal of the Geological Society of London 162, 653–9.CrossRefGoogle Scholar
Fraiser, M. L., Bottjer, D. J. 2007. Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 164–75.CrossRefGoogle Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M., Ciriili, S. & Weissert, H. 2007. Stratigraphy and palaeoenvironmental analysis of the Triassic-Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 244, 5270.CrossRefGoogle Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M. & Weissert, H. 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 203–14.CrossRefGoogle Scholar
Ganino, C. & Arndt, N. T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–6.CrossRefGoogle Scholar
Gibson, L., Lynam, A. J., Bradshaw, C. J., He, F., Bickford, D. P., Woodruff, D. S., Bumrungsri, S. & Laurance, W. F. 2013. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–10.CrossRefGoogle ScholarPubMed
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P. B. & Sanei, H. 2015. Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea. Geological Magazine, published online 15 July 2015. doi: 10.1017/S0016756815000436.Google Scholar
Grasby, S. E., Sanei, H. & Beauchamp, B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience 4, 104–7.CrossRefGoogle Scholar
Grattan, J. 2005. Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos 79, 343–53.CrossRefGoogle Scholar
Greene, S. E., Bottjer, D. J., Corsetti, F. A., Berelson, W. M. & Zonneveld, J.-P. 2012 a. A subseafloor carbonate factory across the Triassic-Jurassic transition. Geology 40, 1043–6.CrossRefGoogle Scholar
Greene, S. E., Martindale, R. C., Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A. & Berelson, W. M. 2012 b. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth Science Reviews 113, 7293.CrossRefGoogle Scholar
Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W. & Jin, Y. 2005 a. Photic Zone Euxinia during the Permian-Triassic superanoxic event. Science 307, 706–9.CrossRefGoogle ScholarPubMed
Grice, K., Nabbefeld, B. & Maslen, E. 2007. Source and significance of selected Polycyclic Aromatic Hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary. Organic Geochemistry 38, 1795–803.CrossRefGoogle Scholar
Grice, K., Twitchett, R. J., Alexander, R., Foster, C. B. & Looy, C. V. 2005 b. A potential biomarker for the Permian-Triassic ecological crisis. Earth and Planetary Science Letters 236, 315–21.CrossRefGoogle Scholar
Gurov, E., Gurova, E., Chernenko, Y. & Yamnichenko, A. 2009. The Obolon impact structure, Ukraine, and its ejecta deposits. Meteoritics & Planetary Science 44, 389404.CrossRefGoogle Scholar
Hallam, A. 1993. Major bio-events in the Triassic and Jurassic. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), pp. 265283. Heidelberg: Springer.Google Scholar
Hallam, A. 1995. Oxygen-restricted facies of the basal Jurassic of north west Europe. Historical Biology 10, 247–57.CrossRefGoogle Scholar
Hallam, A. & Wignall, P. B. 1997. Mass Extinctions and their Aftermath. Oxford: Oxford University Press.Google Scholar
Hallam, A., Wignall, P. B., Yin, J. & Riding, J. B. 2000. An investigation into possible facies changes across the Triassic-Jurassic boundary in southern Tibet. Sedimentary Geology 137, 101–6.CrossRefGoogle Scholar
Harfoot, M. B., Pyle, J. A. & Beerling, D. J. 2008. End-Permian ozone shield unaffected by oceanic hydrogen sulphide and methane releases. Nature Geoscience 1, 247–52.CrossRefGoogle Scholar
Hautmann, M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass-extinction. Facies 50, 257–61.CrossRefGoogle Scholar
Hautmann, M., Benton, M. J. & Tomasovych, A. 2008. Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 249, 119–27.CrossRefGoogle Scholar
Hays, L. E., Beatty, T., Henderson, C. M., Love, G. D. & Summons, R. E. 2007. Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld 16, 3950.CrossRefGoogle Scholar
Hermann, E., Hochuli, P. A., Bucher, H., Brühwiler, T., Hautmann, M., Ware, D. & Roohi, G. 2011. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Research 20, 630–7.CrossRefGoogle Scholar
Hesselbo, S. P., McRoberts, C. A. & Palfy, J. 2007. Triassic-Jurassic boundary events: Problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 110.CrossRefGoogle Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon cycle perturbation: a link to initiation of massive volcanism. Geology 30, 251–4.2.0.CO;2>CrossRefGoogle Scholar
Heunisch, C., Luppold, F. W., Reinhardt, L. & Röhling, H.-G. 2010. Palynofazies, Bio-, und Lithostratigraphie im Grenzbereich Trias/Jura in der Bohrung Mariental I (Lappwaldmulde, Ostniedersachsen). Zeitschrift der Deutschen Geologischen Gesellschaft 161, 5198.CrossRefGoogle Scholar
Hochuli, P. A., Vigran, J. O., Hermann, E. & Bucher, H. 2010. Multiple climatic changes around the Permian-Triassic boundary event revealed by an expanded palynological record from mid-Norway. Geological Society of America Bulletin 122, 884–96.CrossRefGoogle Scholar
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A. & Hatziolos, M. E. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–42.CrossRefGoogle ScholarPubMed
Holstein, B. 2004. Palynologische Untersuchungen der Kössener Schichten (Rhät, Alpine Obertrias). Jahresbericht der Geologischen Bundesanstalt 144, 261365.Google Scholar
Hori, R. S., Fujiki, T., Inoue, E. & Kimura, J.-I. 2007. Platinum group element anomalies and bioevents in the Triassic–Jurassic deep-sea sediments of Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 391406.CrossRefGoogle Scholar
Hudspith, V. A., Rimmer, S. M. & Belcher, C. M. 2014. Latest Permian chars may derive from wildfires, not coal combustion. Geology 42, 879–82.CrossRefGoogle Scholar
Huynh, T. T. & Poulsen, C. J. 2005. Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 217, 223–42.CrossRefGoogle Scholar
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, R. K. Pachauri & L. A. Meyer). Geneva, Switzerland: IPCC, 151 pp.Google Scholar
Isozaki, Y. 1997. Permian-Triassic boundary super anoxia and stratified superocean: records from lost deep sea. Science 276, 235–38.CrossRefGoogle Scholar
Jadoul, F. & Galli, M. T. 2008. The Hettangian shallow water carbonates after the Triassic-Jurassic biocalcification crisis: The Albenza Formation in the western Southern Alps. Rivista Italiana di Paleontologia e Stratigrafia 114, 453–70.Google Scholar
Jaraula, C. M. B., Grice, K., Twitchett, R. J., Böttcher, M. E., LeMetayer, P., Dastidar, A. G. & Opazo, L. F. 2013. Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels. Geology 41, 955–8.CrossRefGoogle Scholar
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J. & Sun, Y. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40, 195–8.CrossRefGoogle Scholar
Kampschulte, A. & Strauss, H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204, 255–86.CrossRefGoogle Scholar
Kasprak, A. H., Sepulveda, J., Price-Waldman, R., Williford, K. H., Schoepfer, S. D., Haggart, J. W., Ward, P. D., Summons, R. E. & Whiteside, J. H. 2015. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43, 307–10.CrossRefGoogle Scholar
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K. & Falkowski, P. G. 2005. Biological overprint of the geological carbon cycle. Marine Geology 217, 323–38.CrossRefGoogle Scholar
Kershaw, S., Zhang, T. & Lan, G. 1999. A ?microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 146, 118.CrossRefGoogle Scholar
Kiessling, W., Aberhan, M., Brenneis, B. & Wagner, P. J. 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 201–22.CrossRefGoogle Scholar
Knight, K. B., Nomade, S., Renne, P. R., Marzoli, A., Bertrand, H. & Youbi, N. 2004. The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Earth and Planetary Science Letters 228, 143–60.CrossRefGoogle Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. 1996. Comparative Earth history and Late Permian mass extinction. Science 273, 452–7.CrossRefGoogle ScholarPubMed
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. 2007. Paleophysiology and end-Permian mass-extinction. Earth and Planetary Science Letters 256, 295313.CrossRefGoogle Scholar
Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. M. & Spötl, C. 2009. Palaeoenvironmental significance of carbon and oxygen-isotope stratigraphy of marine Triassic-Jurassic boundary sections in SW Britain. Journal of the Geological Society of London 166, 431–45.CrossRefGoogle Scholar
Kump, L. R., Pavlov, A. & Arthur, M. A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397400.CrossRefGoogle Scholar
Kuroda, J., Hori, R. S., Suzuki, K., Gröcke, D. R. & Ohkouchi, N. 2010. Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site. Geology 38, 1095–8.CrossRefGoogle Scholar
Kürschner, W. M., Batenburg, S. J. & Mander, L. 2013. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic-Jurassic transition. Proceedings of the Royal Society of London, Series B 280, 20131708.Google Scholar
Lehrmann, D. J., Bentz, J. M., Wood, T., Goers, A., Dhillon, R., Akin, S., Li, X., Payne, J. L., Kelley, B. M., Meyer, K. M., Schaal, E. K., Suarez, M. B., Yu, M., Qin, Y., Li, R., Minzoni, M. & Henderson, C. M. 2015. Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass-extinction: New sections and observations from the Nanpanjiang Basin, South China. Palaios 30, 529–52.CrossRefGoogle Scholar
Lindström, S., Pedersen, G. K., van de Schootbrugge, B., Hansen, K. H., Kuhlmann, N., Thein, J., Johansson, L., Petersen, H. I., Awlmark, C., Dybkjaer, K., Weibel, R., Erlstrom, M., Nielsen, L. H., Oschmann, W. & Tegner, C. 2015. Intense and widespread seismicity during the end-Triassic mass-extinction due to emplacement of a large igneous province. Geology 43, 387–90.CrossRefGoogle Scholar
Lindström, S., van de Schootbrugge, B., Dybkjaer, K., Pedersen, G. K., Fiebig, J., Nielsen, L. H. & Richoz, S. 2012. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass-extinction. Geology 40, 531–4.CrossRefGoogle Scholar
Looy, C. V., Twitchett, R. J., Dilcher, D. L., van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. 2001. Life in the end-Permian dead zone. Proceedings of the National Academy of Science 98, 7879–83.CrossRefGoogle ScholarPubMed
Mander, L., Twitchett, R. J. & Benton, M. J. 2008. Palaeoecology of the Late Triassic extinction event in the SW UK. Journal of the Geological Society of London 165, 319–32.CrossRefGoogle Scholar
Martel, A., Blooi, M., Adriaensen, C., Van Rooij, P., Beukema, W., Fisher, M. C., Farrer, R. A., Schmidt, B. R., Tobler, U., Goka, K., Lips, K. R., Muletz, C., Zamudio, K. R., Bosch, J., Lotters, S., Wombwell, E., Garner, T. W. J., Cunningham, A. A., Spitzen-van der Sluijs, A., Salvidio, S., Ducatelle, R., Nishikawa, K., Nguyen, T. T., Kolby, J. E., Van Bocxlaer, I., Bossuyt, F. & Pasmans, F. 2014. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–1.CrossRefGoogle ScholarPubMed
Martindale, R. C., Berelson, W. M., Corsetti, F. A., Bottjer, D. J. & West, A. J. 2012. Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 350–352, 114–23.CrossRefGoogle Scholar
Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. 2003. Sulfur geochemistry across a terrestrial Permian-Triassic boundary section in the Karoo Basin, South Africa. Earth and Planetary Science Letters 206, 101–17.CrossRefGoogle Scholar
Marynowski, L. & Simoneit, B. R. T. 2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios 24, 785–98.CrossRefGoogle Scholar
Marzoli, A., Bertrand, H., Knight, K., Cirilli, S., Buratti, N., Verati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L. & Bellieni, G. 2004. Synchrony of the Central Magmatic Province and the Triassic-Jurassic boundary and biotic crisis. Geology 32, 973–6.CrossRefGoogle Scholar
Marzoli, A., Jourdan, F., Puffer, J. H., Cuppone, T., Tanner, L. H., Weems, R. E., Bertrand, H., Cirilli, S., Bellieni, G. & De Min, A. 2011. Timing and duration of the Central Atlantic Magmatic Province in the Newark and Culpeper Basins, eastern USA. Lithos 122, 175–88.CrossRefGoogle Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, A., Bellieni, G. & De Min, A. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284, 616–8.CrossRefGoogle ScholarPubMed
McElwain, J. C., Beerling, D. J. & Woodward, F. I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285, 1386–90.CrossRefGoogle ScholarPubMed
Metcalfe, I., Foster, C. B., Afonin, S. A., Nicoll, R. S., Mundil, R., Xiaofeng, W. & Lucas, S. G. 2009. Stratigraphy, biostratigraphy and C-isotopes of the Permian–Triassic non-marine sequence at Dalongkou and Lucaogou, Xinjiang Province, China. Journal of Asian Earth Sciences 36, 503–20.CrossRefGoogle Scholar
Meyer, K. M. & Kump, L.R. 2008. Oceanic euxinia in Earth history: causes and consequences. Annual Review Earth and Planetary Sciences 36, 251–88.CrossRefGoogle Scholar
Meyer, K. M., Kump, L. R. & Ridgwell, A. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–50.CrossRefGoogle Scholar
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. 2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302, 378–84.CrossRefGoogle Scholar
Murphy, R. R., Kemp, W. M. & Ball, W. P. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts 34, 1293–309.CrossRefGoogle Scholar
Nabbefeld, B., Grice, K., Summons, R. E., Hays, L. E. & Cao, C. 2010. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections. Applied Geochemistry 25, 1374–82.CrossRefGoogle Scholar
Newell, A. J., Sennikov, A. G., Benton, M. J., Molostovskaya, I. I., Golubev, V. K., Minikh, A. V. & Minikh, M. G. 2010. Disruption of playa-lacustrine depositional systems at the Permo-Triassic boundary: evidence from Vyazniki and Gorokhovets on the Russian Platform. Journal of the Geological Society of London 167, 695716.CrossRefGoogle Scholar
Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth and Planetary Science Letters 218, 331–45.CrossRefGoogle Scholar
Nomade, S., Knight, K. B., Beutel, E., Renne, P. R., Verati, C., Feraud, G., Marzoli, A., Youbi, N. & Bertrand, H. 2006. Chronology of the Central Atlantic Magmatic Province: Implications for the central Atlantic rifting processes and the Triassic-Jurassic biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 324–42.Google Scholar
Olsen, P. E., Kent, D. V., Sues, H-D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E. C., Fowell, S. J., Szajina, M. J. & Hartline, B. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296, 1305–7.CrossRefGoogle Scholar
Palfy, J. 2003. Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic mass-extinction. In The Central Atlantic Magmatic Province: Insights from Fragments of Pangea (eds Hames, W., Mchone, J.G., Renne, P. & Ruppel, C.), pp. 255–67. Washington, DC: American Geophysics Union.CrossRefGoogle Scholar
Payne, J. L. & Clapham, M. E. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40, 89111.CrossRefGoogle Scholar
Payne, J. L., Lehrmann, D. J., Follett, D., Seibel, M., Kump, L. R., Riccardi, A., Altiner, D., Sano, H. & Wei, J. 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin 119, 771–84.CrossRefGoogle Scholar
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–9.CrossRefGoogle ScholarPubMed
Pienkowski, G., Niedzwiedzki, G. & Branski, P. 2014. Climatic reversals related to the Central Atlantic Magmatic Province caused the end-Triassic biotic crisis - Evidence from continental strata in Poland. In Volcanism, Impacts, and Mass-Extinctions: Causes and Effects (eds Keller, G. & Kerr, A.). Boulder: Geological Society of America.Google Scholar
Pienkowski, G., Niedzwiedzki, G. & Waksmundzka, M. 2012. Sedimentological, palynological and geochemical studies of the terrestrial Triassic–Jurassic boundary in northwestern Poland. Geological Magazine 149, 308–32.CrossRefGoogle Scholar
Reichow, M. K., Pringle, M. S., Al’Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A. & Saunders, A. D. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277, 920.CrossRefGoogle Scholar
Reinemund, J. A. 1955. Geology of the Deep River coal field North Carolina. Geological Survey Professional Paper 246, pp. 159.Google Scholar
Retallack, G. J. 2013. Permian and Triassic greenhouse crises. Gondwana Research 24, 90103.CrossRefGoogle Scholar
Riccardi, A. L., Arthur, M. A. & Kump, L. R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta 70, 5740–52.CrossRefGoogle Scholar
Richoz, S., van de Schootbrugge, B., Pross, J., Püttmann, W., Quan, T. M., Lindström, S., Heunisch, C., Fiebig, J., Maquil, R., Hauzenberger, C., Schouten, S. & Wignall, P. B. 2012. Hydrogen sulphide poisoning of shallow seas due to end-Triassic global warming. Nature Geoscience 5, 662–7.CrossRefGoogle Scholar
Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. 2008. Evaluating the links between climate, disease spread, and amphibian declines. Proceedings of the National Academy of Science 105, 17436–41.CrossRefGoogle ScholarPubMed
Romano, R., Masetti, D., Barattolo, F., Carras, N., Barattolo, F. & Roghi, G. 2008. The Triassic/Jurassic boundary in a peritidal carbonate platform of the Pelagonian Domain: The Mount Messapion section (Chalkida, Greec). Rivista Italiana di Paleontologia e Stratigrafia 114, 431–52.Google Scholar
Roopnarine, P. D. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32, 119.CrossRefGoogle Scholar
Ruhl, M., Bonis, N. R., Reichart, G.-J., Sinninghe Damste, J. S. & Kürschner, W. 2011. Atmospheric carbon injection linked to end-Triassic mass-extinction. Science 333, 430–4.CrossRefGoogle ScholarPubMed
Ruhl, M., Deenen, M. H. L., Abels, H. A., Bonis, N. R., Krijgsman, W. & Kürschner, W. 2010. Astronomical constraints on the duration of the Early Jurassic Hettangian stage and recovery rates following the end-Triassic mass-extinction (St Audrie's Bay/East Quantoxhead, UK). Earth and Planetary Science Letters 295, 262–76.CrossRefGoogle Scholar
Schaller, M. F., Wright, J. D. & Kent, D. V. 2011. Atmospheric pCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331, 1404–9.CrossRefGoogle Scholar
Schaller, M. F., Wright, J. D., Kent, D. V. & Olsen, P. E. 2012. Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2 . Earth and Planetary Science Letters 323–324, 2739.CrossRefGoogle Scholar
Schaltegger, U., Guex, J., Bartolini, A., Schoene, B. & Ovtcharova, M. 2008. Precise U-Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters 267, 266–75.CrossRefGoogle Scholar
Schmieder, M., Buchner, E., Schwarz, W. H., Trieloff, M. & Lambert, P. 2010. A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteoritics & Planetary Science 45, 1225–42.CrossRefGoogle Scholar
Schmieder, M., Jourdan, F., Tohver, E. & Cloutis, E. A. 2014. 40Ar/39Ar age of the Lake Saint Martin impact structure (Canada): Unchaining the Late Triassic terrestrial impact craters. Earth and Planetary Science Letters 406, 3748.CrossRefGoogle Scholar
Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Research 26, 675–83.CrossRefGoogle Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–90.CrossRefGoogle Scholar
Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters 248, 518–32.CrossRefGoogle Scholar
Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V. & Visscher, H. 2015. Terrestrial acidification during the end-Permian biosphere crisis. Geology 43, 159–63.CrossRefGoogle Scholar
Sephton, M. A., Looy, C. V., Brinkhuis, H., Wignall, P. B., de Leeuw, J. W. & Visscher, H. 2005. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33, 941–4.CrossRefGoogle Scholar
Sephton, M. A., Looy, C. V., Veefkind, R. J., Visscher, H., Brinkhuis, H. & de Leeuw, J. W. 1999. Cyclic diaryl ethers in a Late Permian sediment. Organic Geochemistry 30, 267–73.CrossRefGoogle Scholar
Sepkoski, J. J. Jr 1987. Environmental trends in extinction during the Paleozoic. Science 235, 64–6.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.), pp. 3551. Berlin: Springer.CrossRefGoogle Scholar
Shen, S.-Z. & Bowring, S. A. 2014. The end-Permian mass extinction: a still unexplained catastrophe. National Science Review 1, 492–5.CrossRefGoogle Scholar
Shen, S.-Z., Cao, C.-Q., Zhang, H., Bowring, S. A., Henderson, C. M., Payne, J. L., Davydov, V. I., Chen, B., Yuan, D.-X., Zhang, Y.-C., Wang, W. & Zheng, Q.-F. 2013. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth and Planetary Science Letters 375, 156–65.CrossRefGoogle Scholar
Shen, S.-Z., Crowley, J. L., Wang, Y., Bowring, S. A., Erwin, D. H., Sadler, P. M., Cao, C. Q., Rothman, D. H., Henderson, C. M., Ramezani, J., Zhang, H., Shen, Y., Wang, X. D., Wang, W., Mu, L., Li, W. Z., Tang, Y. G., Liu, X. L., Liu, L. J., Zeng, Y., Jiang, Y. F. & Jin, Y. G. 2011 a. Calibrating the end-Permian mass extinction. Science 334, 1367–72.CrossRefGoogle ScholarPubMed
Shen, W., Lin, Y., Xu, L., Li, J., Wu, Y. & Sun, Y. 2007. Pyrite framboids in the Permian–Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 253, 323–31.CrossRefGoogle Scholar
Shen, W., Sun, Y., Lin, Y., Liu, D. & Chai, P. 2011 b. Evidence for wildfire in the Meishan section and implications for Permian–Triassic events. Geochimica et Cosmochimica Acta 75, 19922006.CrossRefGoogle Scholar
Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M. & Belov, K. 2007. Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences 104, 16221–6.CrossRefGoogle Scholar
Simms, M. J. 2003. Uniquely extensive seismite from the latest Triassic of the United Kingdom: evidence for bolide impact? Geology 31, 557–60.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. M. H. & Botha-Brink, J. 2014. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo Basin, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 396, 99118.CrossRefGoogle Scholar
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A. & Vasiliev, Y. R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–6.CrossRefGoogle ScholarPubMed
Song, H. J., Wignall, P. B., Chu, D., Tong, J., Sun, Y., Song, H., He, W. & Tian, L. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports 4, 4132.CrossRefGoogle ScholarPubMed
Song, H. J., Wignall, P. B., Tong, J. & Yin, H. 2013. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience 6, 52–6.CrossRefGoogle Scholar
Spray, J. G., Kelley, S. P. & Rowley, D. B. 1998. Evidence for a late Triassic multiple impact event on Earth. Nature 392, 171–3.CrossRefGoogle Scholar
Stanley, G. D. Jr 1988. The history of early Mesozoic reef communities: a three step process. Palaios 3, 170–83.Google Scholar
Stanley, G. D. Jr 2003. The evolution of modern corals and their early history. Earth-Science Reviews 60, 195225.CrossRefGoogle Scholar
Stanley, G. D. Jr & Beauvais, L. 1994. Corals from an Early Jurassic coral reef in British Columbia: refuge on an oceanic island reef. Lethaia 27, 3547.CrossRefGoogle Scholar
Steiner, M. B., Eshet, Y., Rampino, M. R. & Schwindt, D. M. 2003. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology 194, 405–14.CrossRefGoogle Scholar
Steinthorsdottir, M., Jeram, A. J. & McElwain, J. C. 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 418–32.CrossRefGoogle Scholar
Stevens, R. B. 1960. Cultural practices in disease control. In Plant Pathology and Advanced Treatise (eds Horsfall, J. G. & Dimonds, A. E.), pp. 357429. New York: Academic Press.Google Scholar
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L. & Lai, X. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–70.CrossRefGoogle ScholarPubMed
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y. & Jamtveit, B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277, 490500.CrossRefGoogle Scholar
Tanner, L. H., Kyte, F. T. & Walker, A. E. 2008. Multiple Ir anomalies in uppermost Triassic to Jurassic-age strata of the Blomidon Formation, Fundy basin, eastern Canada. Earth and Planetary Science Letters 274, 103–11.CrossRefGoogle Scholar
Tanner, L. H., Lucas, S. G. & Chapman, M. G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews 65, 103–39.CrossRefGoogle Scholar
Tanner, L. H., Smith, D. L. & Allan, A. 2007. Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano. Geophysical Research Letters 34, 15 L15807.CrossRefGoogle Scholar
Tomlinson, G. H. 2003. Acid deposition, nutrient leaching and forest growth. Biogeochemistry 65, 5181.CrossRefGoogle Scholar
Twitchett, R. J. 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 2737.CrossRefGoogle Scholar
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R. & Richoz, S. 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32, 805–8.CrossRefGoogle Scholar
Uhl, D. & Montenari, M. 2011. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geological Journal 46, 3441.CrossRefGoogle Scholar
Ulrich, B. 1990. Waldsterben: forest decline in West Germany. Environmental Science and Technology 24, 436.CrossRefGoogle Scholar
van de Schootbrugge, B., Bachan, A., Suan, G., Richoz, S. & Payne, J. L. 2013. Microbes, mud, and methane: Cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass-extinction. Palaeontology 56, 685709.CrossRefGoogle Scholar
van de Schootbrugge, B., Payne, J. L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K. B. & Quan, T. M. 2008. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems 9, Q04028.CrossRefGoogle Scholar
van de Schootbrugge, B., Quan, T., Lindström, S., Püttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H.-G., Richoz, S., Rosenthal, Y. & Falkowski, P. G. 2009. Floral changes across the Triassic-Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2, 489594.CrossRefGoogle Scholar
van de Schootbrugge, B., Tremolada, F., Bailey, T. R., Rosenthal, Y., Feist-Burkhardt, S., Brinkhuis, H., Pross, J., Kent, D. V. & Falkowski, P. G. 2007. End-Triassic calcification crisis and blooms of organic-walled disaster species. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 126–41.CrossRefGoogle Scholar
Visscher, H., Brinkhuis, H., Dilcher, D. L., Elsik, W. C., Eshet, Y., Looy, C. V., Rampino, M. R. & Traverse, A. 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilisation. Proceedings of the National Academy of Sciences 93, 2155–8.CrossRefGoogle Scholar
Visscher, H., Looy, C. V., Collinson, M. E., Brinkhuis, H., van Konijnenburg-Cittert, J. H. A., Kürschner, W. M. & Sephton, M. A. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences 101, 12952–6.CrossRefGoogle ScholarPubMed
Visscher, H., Sephton, M. A. & Looy, C. V. 2011. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883–6.CrossRefGoogle Scholar
Wake, D. B. & Vredenburg, V. T. 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Science 105, 11466–73.CrossRefGoogle ScholarPubMed
Wang, Y., Sadler, P. M., Shen, S-Z., Erwin, D. H., Zhang, Y.-C., Wang, X.-D., Wang, W., Crowley, J. L. & Henderson, C. M. 2014. Quantifying the process and abruptness of the end-Permian mass-extinction. Palaeobiology 40, 113–29.CrossRefGoogle Scholar
Ward, P. D., Montgomery, D. R. & Smith, R. 2000. Altered river morphology in South Africa related to the Permian-Triassic extinction. Science 289, 1740–3.CrossRefGoogle ScholarPubMed
Wargo, P. M. 1996. Consequences of environmental stress on oak: predisposition to pathogens. Annals of Science Forum 53, 359–68.CrossRefGoogle Scholar
Watson, J. S., Sephton, M. A., Looy, C. V. & Gilmour, I. 2005. Oxygen-containing aromatic compounds in a Late Permian sediment. Organic Geochemistry 36, 371–84.CrossRefGoogle Scholar
Whiteside, J. H., Olsen, P. E., Eglinton, T., Brookfield, M. E. & Sambrotto, R. N. 2010. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass-extinction. Proceedings of the National Academy of Sciences 107, 6721–5.CrossRefGoogle ScholarPubMed
Wignall, P. B. 2001 a. Large igneous provinces and mass extinctions. Earth-Science Reviews 53, 133.CrossRefGoogle Scholar
Wignall, P. B. 2001 b. Sedimentology of the Triassic-Jurassic boundary beds in Pinhay Bay (Devon, SW England). Proceedings of the Geologists’ Association 112, 349–60.CrossRefGoogle Scholar
Wignall, P. B. 2015. The Worst of Times: 80 million years of Extinction: How Life on Earth Survived Eighty Million Years of Extinctions. Princeton: Princeton University Press.CrossRefGoogle Scholar
Wignall, P. B. & Bond, D. P. G. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists’ Association 119, 7384.CrossRefGoogle Scholar
Wignall, P. B., Bond, D. P. G., Kuwahara, K., Kakuwa, Y., Newton, R. J. & Poulton, S. W. 2010. An 80 million year oceanic redox history from the Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71, 109–23.CrossRefGoogle Scholar
Wignall, P. B. & Hallam, A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93, 2146.CrossRefGoogle Scholar
Wignall, P. B., Newton, R. & Brookfield, M. E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 183–8.CrossRefGoogle Scholar
Wignall, P. B. & Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In Catastrophic Events and Mass Extinctions; Impacts and Beyond (ed. MacLeod, K. G.), pp. 395413. Boulder, Colorado: Geological Society of America.CrossRefGoogle Scholar
Wignall, P. B., Zonneveld, J.-P., Newton, R. J., Amor, K., Sephton, M. A. & Hartley, S. 2007. The end Triassic mass-extinction record of Williston Lake, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology 253, 385406.CrossRefGoogle Scholar
Williford, K. H., Foriel, J., Ward, P. D. & Steig, E. J. 2009. Major perturbation in sulfur cycling at the Triassic-Jurassic boundary. Geology 37, 835–8.CrossRefGoogle Scholar
Williford, K. H., Grice, K., Holman, A. & McElwain, J. C. 2014. An organic record of terrestrial ecosystem collapse and recovery at the Triassic–Jurassic boundary in East Greenland. Geochimica et Cosmochimica Acta 127, 251–63.CrossRefGoogle Scholar
Winner, W. E. & Mooney, H. A. 1980 a. Ecology of SO2 resistance: II. Photosynthetic changes of shrubs in relation to SO2 absorption and stomatal behavior. Oecologia 44, 296302.CrossRefGoogle Scholar
Winner, W. E. & Mooney, H.A. 1980 b. Ecology of SO2 resistance: III. Metabolic changes of C3 and C4 Atriplex species due to SO2 fumigation. Oecologia 46, 4954.CrossRefGoogle Scholar
Woods, A. D., Bottjer, D. J., Mutti, M. & Morrison, J. 1999. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27, 645–8.2.3.CO;2>CrossRefGoogle Scholar
Wotzlaw, J.-F., Guex, J., Bartolini, A., Gallet, Y., Krystyn, L., McRoberts, C. A., Taylor, D., Schoene, B. & Schaltegger, U. 2014. Towards accurate numerical calibration of the Late Triassic: High-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42, 571–4.CrossRefGoogle Scholar
Yáñez-López, R. 2012. The effect of climate change on plant diseases. African Journal of Biotechnology 11, 2417–28.CrossRefGoogle Scholar
Zajzon, N., Kristaly, F., Palfy, J. & Nemeth, T. 2012. Detailed clay mineralogy of the Triassic-Jurassic boundary section at Kendlbachgraben (Northern Calcareous Alps, Austria). Clay Minerals 47, 177–89.CrossRefGoogle Scholar
35
Cited by