Hostname: page-component-6b989bf9dc-pkhfk Total loading time: 0 Render date: 2024-04-13T04:28:34.860Z Has data issue: false hasContentIssue false

What Darwin did not see: Pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands

Published online by Cambridge University Press:  28 September 2012

Department of Geosciences, Williams College, Williamstown, MA 01267USA
Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, Avd. 3 de Marzo, s/n, 21071 Huelva, Spain
Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, Avd. 3 de Marzo, s/n, 21071 Huelva, Spain
Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, BC 22800, México
Department of Geosciences, Williams College, Williamstown, MA 01267USA
Departamento de Geologia e Centro de Geologia, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
Departamento de Geologia e Centro de Geologia, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
Author for correspondence:


Two distinct Pleistocene assemblages from SE Santiago Island are comparable to modern analogues elsewhere in the Cape Verde Islands. A low-diversity Siderastrea radians assemblage lived atop basalt knobs surrounded by sand on a slope below a cliff. A Millepora alcicornisMegabalanus azoricus assemblage occupied the cliff. The latter was a typical rocky-shore assemblage from a high-energy setting below the tidal zone. Bioerosion structures in basalt produced by Circolites kotoncensis and Gastrochaenolites isp. also occur there. Despite extensive studies on local limestone deposits in 1832 and 1836, lack of exposure prevented Darwin from seeing these fossils.

Rapid Communication
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Allouc, J., Le Campion-Alsumard, T. & Leung Tack, D. 1996. La bioérosion des substrats magmatiques en milieu littoral: l’exemple de la presqu’île du Cap Vert (Sénégal Occidental). (Bioerosion of magmatic rocks in a coastal environment: the example of the Cap Vert peninsula (Western Senegal)). Geobios 29, 485502.CrossRefGoogle Scholar
Asgaard, U. & Bromley, R. G. 2008. Echinometrid sea urchins, their trophic styles and corresponding bioeorsion. In Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.), pp. 279303. Erlangen Earth Conference Series. Heildelberg: Springer Verlag.Google Scholar
Ávila, S. P., Madeira, P., Zazo, C., Kroh, A., Kirby, M., Da Silva, C. M., Cachão, M. & De Frias Martins, A. M. 2009. Palaeoecology of the Pleistocene (MIS 5.5) outcrops of Santa Maria Island (Azores) in a complex oceanic tectonic setting. Palaeogeography, Palaeoclimatology, Palaeoecology 274, 1831.Google Scholar
Barker, A. K., Holm, P. M., Peate, D. W. & Baker, J. A. 2010. A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contributions to Mineralogy and Petrology 160, 133–54.CrossRefGoogle Scholar
Boekschoten, G. J. & Best, M. B. 1988. Fossil and recent shallow water corals from the Atlantic islands off western Africa. Zoologische Mededelingen Rijksmuseum van Natuurlijke Historie te Leiden 62, 99112.Google Scholar
Darwin, C. 1839. Journal and Remarks, 1832–1836. In Narrative of the Surveying Voyages of His Majesty's Ships Adventure and Beagle Between the Years 1826 and 1836, Vol. 3 (ed. FitzRoy, R.). London: Henry Colburn, 615 pp.Google Scholar
Darwin, C. 1844. Geological Observations on the Volcanic Islands Visited During the Voyage of the H.M.S. Beagle. London: Smith, Elder & Co., 175 pp.Google Scholar
Darwin, C. R. 1958. The Autobiography of Charles Darwin 1809–1882. With the Original Omissions Restored. Edited and With Appendix and Notes by His Grand-daughter, Nora Barlow. London: Collins, 253 pp.Google Scholar
Donovan, S. K. 1989. Palaeoecology and significance of barnacles in the Pliocene Balanus Bed in Tobago, West Indies. Geological Journal 24, 239–50.CrossRefGoogle Scholar
Fischer, R. 1981. Bioerosion of basalt of the Pacific West coast of Costa Rica. Senckenbergiana Maritima 13, 141.Google Scholar
Holm, P. M., Grandvuinet, T., Friis, J., Wilson, J. R., Barker, A. K. & Plesner, S. 2008. An 40Ar-39Ar study of the Cape Verde hot spot: temporal evolution in a semistationary plate environment. Journal of Geophysical Research (Solid Earth) 113 (B8), B08201.Google Scholar
Johnson, M. E. 1988. Why are ancient rocky shores so uncommon? Journal of Geology 96, 469–80.Google Scholar
Johnson, M. E. & Baarli, B. G. 2012. Development of intertidal biotas through Phanerozoic time. In Earth and Life (ed. Talent, J. A.), pp. 63128. International Year of Planet Earth. Dordrecht, The Netherlands: Springer Science+Business Media. B.V.Google Scholar
Johnson, M. E., Baarli, B. G., Cachão, M., Da Silva, C. M., Ledesma-Vázquez, J., Mayoral, E. J., Ramalho, R. S. & Santos, A. 2012. Rhodoliths, uniformitarianism, and Darwin: Pleistocene and Recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeography, Palaeoclimatology, Palaeoecology 329–330, 83100.Google Scholar
Johnson, M. E., Da Silva, C. M., Santos, A., Baarli, B. G., Cachão, M., Mayoral, E. J., Rebelo, A. C. & Ledesma-Vázquez, J. 2011. Rhodolith transport and immobilization on a volcanically active rocky shore: Middle Miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology 300, 113–27.Google Scholar
Johnson, M. E., Karabinos, P. M. & Mendia, V. 2010. Quaternary intertidal deposits intercalated with volcanic rocks on Isla Sombrero Chino in the Galápagos. Journal of Coastal Research 26, 762–8.Google Scholar
Kawachi, Y. & Pringle, I. J. 1988. Multiple-rind structure in pillow lava as an indicator of shallow water. Bulletin of Volcanology 50, 161–8.Google Scholar
Monteiro, J., Almeida, C., Freitas, R., Delgado, A., Porteiro, F. & Santos, R. 2008. Coral assemblages of Cabo Verde: preliminary assessment and description. In Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, Florida 7–11, 1416–19.Google Scholar
Morri, C. & Bianchi, C. 1995. Ecological niches of hermatypic corals at Ilha do Sal (Arquipélago de Cabo Verde). Boletim do Museu Municipal do Funchal, Madeira 4, 473–85.Google Scholar
Morri, C., Cattaeno-Vietti, R., Sartori, G., & Bianchi, C. 2000. Shallow epibenthic communities of Ilha do Sal (Cape Verde Archipelago, eastern Atlantic). Aquipélago. Life and Marine Sciences. Supplement 2 (Part A), 157–65.Google Scholar
Pearson, P. N. & Nicholas, C. J. 2007. ‘Marks of extreme violence’: Charles Darwin's geological observations at St Jago (São Tiago), Cape Verde islands. In Four Centuries of Geological Travel: the Search for Knowledge on Foot, Bicycle, Sledge and Camel (ed. Wyse Jackson, P. N.), pp. 239–53. Geological Society of London, Special Publication no. 287.Google Scholar
Ramalho, R., Helffrich, G., Vance, D. & Schmidt, D. N. 2010. Tracers of uplift and subsidence in the Cape Verde Archipelago. Journal of Geological Society, London 167, 519–38.Google Scholar
Santos, A. G., Mayoral, E. J., Da Silva, C. M., Cachão, M., Johnson, M. E. & Baarli, B. G. 2011. Miocene intertidal zonation on a volcanically active shoreline: Porto Santo in the Madeira Archipelago (Portugal). Lethaia 44, 2632.CrossRefGoogle Scholar
Santos, A., Da Silva, C. M., Johnson, M. E., Baarli, B. G., Cachão, M., Ledesma-Vásquez, J. & Mayoral, E. 2012. An extreme habitat adaptation for boring bivalves on a volcanically active Middle Miocene rocky shoreline (Porto Santo, Madeira Archipelago, Portugal). Facies 58, 325–38.Google Scholar
Serralheiro, A. 1976. A geologia da Ilha de Santiago (Cabo Verde). Boletim do Museu Laboratório Mineralógico e Geológico da Faculdade de Ciências 14, 157369.Google Scholar