Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T17:59:05.653Z Has data issue: false hasContentIssue false

Cenozoic evolution of the Tripolitza carbonate platform in the Tethyan realm: new age constraints on deposition, diagenesis, metamorphism and nappe emplacement based on U-Pb and Rb-Sr dating (External Hellenides, Crete)

Published online by Cambridge University Press:  20 July 2023

T. Klein*
Affiliation:
Wintershall Dea AG, Friedrich-Ebert Strasse 160, 34119, Kassel, Germany
G. Zulauf
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt a.M., Altenhöferallee 1, D-60438, Frankfurt a.M., Germany
D. Evans
Affiliation:
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt a.M., Altenhöferallee 1, D-60438, Frankfurt a.M., Germany
A. Gerdes
Affiliation:
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt a.M., Altenhöferallee 1, D-60438, Frankfurt a.M., Germany
J. Glodny
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany
F. Heidelbach
Affiliation:
Universität Bayreuth, Bayerisches Geoinstitut (BGI), Universitätsstr. 30, D-95447, Bayreuth, Germany
F. Kirst
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt a.M., Altenhöferallee 1, D-60438, Frankfurt a.M., Germany
J. Linckens
Affiliation:
Tata Steel, R&D, Microstructural and Surface Characterization, 1970 CA, Ijmuiden, The Netherlands
W. Müller
Affiliation:
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt a.M., Altenhöferallee 1, D-60438, Frankfurt a.M., Germany
E. Özcan
Affiliation:
Department of Geological Engineering, Faculty of Mines, İstanbul Technical University, İstanbul, Turkey
R. Petschick
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt a.M., Altenhöferallee 1, D-60438, Frankfurt a.M., Germany
P. Xypolias
Affiliation:
Department of Geology, University of Patras, Patras, Greece
*
Corresponding author: Thomas Klein; Email: thomas.klein@wintershalldea.com

Abstract

We present kinematic, radiometric, geochemical and PT data, which help to constrain the tectonometamorphic evolution of the Tripolitza Unit (TPU). The age of both the metamorphic peak (P = 0.4 ±0.2 GPa, T = ca. 310 °C) and top-to-the WNW mylonitic thrusting, attributed to the emplacement of the hanging Pindos nappe, has been constrained at 19 ±2.5 Ma using Rb-Sr on synkinematic white mica of a basal mylonite of NW Crete. This early tectonic event is also documented by the oldest generation of veins, which cut through less metamorphic (T = 240 ±15 °C) late Bartonian/Priabonian Nummulite limestone exposed as olistolith in TPU flysch of central Crete. Calcite of these veins yielded a similar U-Pb age at 20 ±6 Ma. U-Pb dating of matrix calcite, on the other hand, reflect the time of sedimentation (38.4 ±5.7 Ma and 37.6 ±1.2 Ma), which is in line with the faunal content of the black limestone. Geochemical data and U-Pb calcite ages of fibres of the Nummulite test (32.3 ±3.1 Ma and 34.6 ±0.9 Ma) suggest unexpected pseudomorphic fibre replacement during late Priabonian/early Rupelian diagenesis. Additional calcite veins, which developed at ca. 10–11 and 7 – 9 Ma (U-Pb on calcite), are attributed to top-to-the S thrusting and subsequent extension, respectively. The resulting anticlockwise rotation of the shortening direction within the TPU from WNW-ESE at ca. 20 Ma to N-S at ca. 10 Ma has significant implications for the geodynamic evolution of the External Hellenides.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bestmann, M and Prior, DJ (2003) Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. Journal of Structural Geology 25, 1597–603.CrossRefGoogle Scholar
Boiteau, R, Greaves, M and Elderfield, H (2012) Authigenic uraniumin in foraminiferal coatings: a proxy for ocean redox chemistry. Paleoceanography 27, PA3227, doi: 10.1029/2012PA002335 CrossRefGoogle Scholar
Bonneau, M (1984) Correlation of the Hellenide nappes in the south-east Aegean and their tectonic reconstruction, in: Robertson, A.H.F. and Dixon, J.E. The Geological Evolution of the Eastern Mediterranean. Geological Society of London, Special Publication 17, 517–27.CrossRefGoogle Scholar
Bonneau, M and Karakitsios, V (1979) Lower (Upper Triassic) Horizons of the Tripolitza Nappe in Crete (Greece) and their relationship with the phyllite nappe—problems of stratigraphy, tectonics and metamorphism. Comptes Rendus de l’Académie des Sciences, Série D 28, 15–8.Google Scholar
BouDagher-Fadel, MK (2008) Evolution and geological significance of larger Benthic Foraminifera. Developments in Palaeontology and Stratigraphy Elsevier, Amsterdam, 21, 540.Google Scholar
Burisch, M, Gerdes, A, Walter, BF, Neumann, U, Fettel, M and Markl, G (2017) Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geology Reviews 81, 4261.CrossRefGoogle Scholar
Burkhard, M (1993) Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of Structural Geology 15, 351–68.CrossRefGoogle Scholar
Chatzaras, V, Xypolias, P and Doutsos, T (2006) Exhumation of high-pressure rocks under continuous compression: a working hypothesis for the southern Hellenides (central Crete, Greece). Geological Magazine 143, 859–76. doi: 10.1017/S0016756806002585.CrossRefGoogle Scholar
Coogan, LA, Parrish, RR and Roberts, NM (2016) Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating. Geology 44, 147–50. doi: 10.1130/G37212.1.CrossRefGoogle Scholar
Cotton, LJ, Evans, D and Beavington-Penney, SJ (2020) The high-magnesium calcite origin of nummulitid foraminifera and implications for the identification of calcite diagenesis. Palaios 35, 421–31. doi: 10.2110/palo.2020.029.CrossRefGoogle Scholar
Cotton, LJ and Pearson, PN (2011) Extinction of larger benthic foraminifera at the Eocene/Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 281–96. doi: 10.1016/j.palaeo.2011.09.008.CrossRefGoogle Scholar
Craddock, JP, Klein, T, Kowalczyk, G and Zulauf, G (2009) Calcite twinning strains in Alpine orogen flysch: implications for thrustnappe mechanics and the geodynamics of Crete. Lithosphere 1, 174–91.CrossRefGoogle Scholar
Creutzburg, N and Seidel, E (1975) Zum Stand der Geologie des Präneogens auf Kreta. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 149, 363–83.Google Scholar
Dang, DH, Evans, RD, Wang, W, Omanović, D, El Houssainy, A, Lenoble, V, Mullot, J-U, Mounier, S and Garnier, C (2018) Uranium isotope geochemistry in modern coastal sediments: insights from Toulon Bay, France. Chemical Geology 481, 133–45. doi: 10.1016/j.chemgeo.2018.01.032.CrossRefGoogle Scholar
De Bresser, JHP and Spiers, CJ (1997) Strength characteristics of the r, f, and c slip systems in calcite. Tectonophysics 272, 123.CrossRefGoogle Scholar
Duermeijer, CE, Krijgsman, W, Langereis, CG and ten Veen, JH (1998) Post-early Messinian counterclockwise rotations on Crete: implications for late Miocene to recent kinematics of the southern Hellenic arc. Tectonophysics 298, 177–89.CrossRefGoogle Scholar
Dunham, RJ (1962) Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks (ed Ham, WE), 108–21. Tulsa: AAPG.Google Scholar
Evans, D and Müller, W (2018) Automated extraction of a five-year LA-ICP-MS trace element data set of ten common glass and carbonate reference materials: long-term data quality, optimisation and laser cell homogeneity. Geostandards and Geoanalytical Research 42, 159–88. doi: 10.1111/ggr.12204.CrossRefGoogle Scholar
Evans, D, Müller, W, Oron, S and Renema, W (2013) Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera. Earth and Planetary Science Letters 381, 104–15. doi: 10.1016/j.epsl.2013.08.035.CrossRefGoogle Scholar
Evans, D, Sagoo, N, Renema, W, Cotton, LJ, Müller, W, Todd, JA, Saraswati, PK, Stassen, P, Ziegler, M, Pearson, PN, Valdes, PJ and Affek, HP (2018) Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences 115, 1174–9. doi: 10.1073/pnas.1714744115.CrossRefGoogle ScholarPubMed
Fassoulas, C (2001) The tectonic development of a Neogene basin at the leading edge of the active European margin: the Heraklion basin, Crete, Greece. Journal of Geodynamics 31, 4970.CrossRefGoogle Scholar
Fassoulas, C, Kilias, A and Mountrakis, D (1994) Postnappe stacking extension and exhumation of high-pressure/low-temperature rocks in the island of Crete, Greece. Tectonics 13, 127238.CrossRefGoogle Scholar
Feldhoff, AR, Theye, T and Richter, KD (1993) Coal rank versus illite crystallinity and estimated, p-T conditions: some problems concerning the Pindos, Triplolitza and Phyllite-Quartzite Series in Crete. Bulletin of the Geolgical Society of Greece 28, 603–15.Google Scholar
Feldhoff, RA, Lücke, A and Richter, KD (1991) Über die Diagenese/Metamorphosebedingungen der Pindos-und Tripolitza-Serie auf der Insel Kreta (Griechenland). Zentralblatt für Geologie und Paläontologie Teil I 1990, 1611–22.Google Scholar
Ferreiro Mählmann, R (2001) Correlation of very low grade data to calibrate a thermal maturity model in a nappe tectonic setting, a case study from the Alps. Tectonophysics 334, 133.CrossRefGoogle Scholar
Ferrill, D Morris, A, Evans, M, Burkhard, M, Groshong, R and Onasch, C (2004) Calcite twin morphology: a low-temperature deformation geothermometer. Journal of Structural Geology 26, 1521–9.CrossRefGoogle Scholar
Fietzke, J and Frische, M (2016) Experimental evaluation of elemental behavior during LA-ICP-MS: influences of plasma conditions and limits of plasma robustness. Journal of Analytical Atomic Spectrometry 31, 234–44. doi: 10.1039/C5JA00253B.CrossRefGoogle Scholar
Fortuin, AR and Peters, JM (1984) The Prina complex in eastern Crete and its relationship to possible Miocene strike-slip tectonics. Journal of Structural Geology 6, 459–76.CrossRefGoogle Scholar
Freeman, SR, Inger, S, Butler, RWH and Cliff, RA (1997) Dating deformation using Rb–Sr in white mica: greenschist facies deformation ages from the Entrelor shear zone, Italian Alps. Tectonics 16, 5776.CrossRefGoogle Scholar
Fytrolakis, N and Antoniou, M (1998) Contribution to the knowledge of the Gavrovou subzone flysch formations, in the Messenia and in the area of the Klokova and Varasova. Bulletin Geological Society of Greece 32, 2331.Google Scholar
Garbe-Schönberg, D and Müller, S (2014) Nano-particulate pressed powder tablets for LA-ICP-MS. Journal of Analytical Atomic Spectrometry 29, 9901000.CrossRefGoogle Scholar
Gerdes, A and Zeh, A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology 261, 230–43.CrossRefGoogle Scholar
Glodny, J, Kühn, A and Austrheim, H (2008) Diffusion versus recrystallization processes in Rb–Sr geochronology: isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochimica et Cosmochimica Acta 72, 506–25.CrossRefGoogle Scholar
Godeau, N, Deschamps, P, Guihou, A, Leonide, P, Tendil, A, Gerdes, A, et al. (2018) U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian Limestone, France. Geology 46, 247–50.CrossRefGoogle Scholar
Grasemann, B, Schneider, DA and Rogowitz, A (2019) Back to normal: direct evidence of the Cretan Detachment as a north-directed normal fault during the miocene. Tectonics 38, 3052–69. doi: 10.1029/2019TC005582.CrossRefGoogle Scholar
Hansman, RJ, Albert, R, Gerdes, A and Ring, U (2018) Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology 46, 207–10.CrossRefGoogle Scholar
Haude, G (1989). eologie der Phyllit-Einheit im Gebiet um Palekastro (Nordost-Kreta, Griechenland). Published PhD thesis, 131 pp., Technical University of Munich, Germany.Google Scholar
Hauzer, H, Evans, D, Müller, W, Rosenthal, Y and Erez, J (2018) Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition. Earth and Planetary Science Letters 497, 8091.CrossRefGoogle Scholar
Israelson, C, Halliday, AN and Buchardt, B (1996) U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale. Earth and Planetary Science Letters 141, 153–9.CrossRefGoogle Scholar
Jahn, B, Bertrand-Sarfati, J, Morin, N and Mace, J (1990) Direct dating of stromatolitic carbonates from the Schmidtsdrif Formation (Transvaal Dolomite), South Africa, with implications on the age of the Ventersdorp Supergroup. Geology 18, 1211–4.2.3.CO;2>CrossRefGoogle Scholar
Jahn, B-M and Cuvellier, H (1994) Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment. Chemical Geology 115, 125–51.CrossRefGoogle Scholar
Jochum, KP, Stoll, B, Herwig, K, Willbold, M, Hofmann, AW, Amini, M, et al. (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems 7, 144. doi: 10.1029/2005GC001060.CrossRefGoogle Scholar
Jochum, KP, Weis, U, Stoll, B, Kuzmin, D, Yang, Q, Raczek, I, Jacob, DE, Stracke, A, Birbaum, K, Frick, DA, Günther, D and Enzweiler, J (2011) Determination of Reference Values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35, 397429. doi: 10.1111/j.1751-908X.2011.00120.x.CrossRefGoogle Scholar
Jolivet, L, Goffé, B, Monié, P, Truffert-Luxey, C, Patriat, M and Bonneau, M (1996) Miocene detachment in Crete and exhumation P-T-t paths of high-pressure metamorphic rocks. Tectonics 15, 1129–53.CrossRefGoogle Scholar
Karakitsios, V (1982) Geological map of Greece. Sheet Sellia (Crete) 1:50.000. I.G.M.E., Athens, https://www.eagme.gr/ Google Scholar
Kelly, SD, Newville, MG, Cheng, L, Kemner, KM, Sutton, SR, Fenter, P, Sturchio, NC and Spötl, C (2003) Uranyl incorporation in natural calcite. Environmental Science & Technology 37, 1284–7.CrossRefGoogle Scholar
Kelly, SD, Rasbury, ET, Chattopadhyay, S, Kropf, AJ and Kemner, KM (2006) Evidence of a stable Uranyl site in ancient organic-rich calcite. Environmental Science & Technology 40, 2262–8.CrossRefGoogle ScholarPubMed
Keul, N, Langer, G, De Nooijer, LJ, Nehrke, G, Reichart, GJ and Bijma, J (2013) Incorporation of uraniumin in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochemistry, Geophysics, Geosystems 14, 102–11.CrossRefGoogle Scholar
Klein, T, Craddock, JP and Zulauf, G (2012) Constraints on the geodynamical evolution of Crete: insights from illite crystallinity, Raman spectroscopy and calcite twinning above and below the “Cretan Detachment”. International Journal of Earth Sciences 102, 139–82. doi: 10.1007/s00531-012-0781-4.CrossRefGoogle Scholar
Klein, T, Reichhardt, H, Klinger, L, Grigull, S, Wostal, G and Zulauf, G (2008) Reverse slip along the contact Phyllite-Quartzite Unit/Tripolitza unit in eastern Crete: implications for the geodynamic evolution of the External Hellenides. New Results and Concepts on the Regional Geology of the Eastern Mediterranean (eds Xypolias, P. & Zulauf, G.), Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159, 375–98.Google Scholar
Klein, T, Zulauf, G, Craddock, J and Glodny, J (2006) Methodische Untersuchungen am Kreta-Detachment (Kreta, Griechenland): Anzeichen für eine alpidische Metamorphose der Hangendscholle, TSK 11. In 11. Symposium “Tektonik, Struktur- und Kristallingeologie” -Zusammenfassung der Tagungsbeiträge (eds S Philipp, B Leiss, A Vollbrecht, D Tanner and A Gudmundsson), pp. 108–11. Universitätsverlag Göttingen, Göttingen, Germany, doi: 10.23689/FIDGEO-3.CrossRefGoogle Scholar
Kneuker, T, Dörr, W, Petschick, R and Zulauf, G (2015) Upper crustal emplacement and deformation of granitoids inside the Uppermost Unit of the Cretan nappe stack: constraints from U–Pb zircon dating, microfabrics and paleostress analyses. International Journal of Earth Sciences (Geol Rundsch) 104, 351–67. doi: 10.1007/s00531-014-1088-4.CrossRefGoogle Scholar
Kokkalas, S and Doutsos, T (2001) Strain-dependent stress field and plate motions in the south-east Aegean region. Journal of Geodynamics 32, 311–32.CrossRefGoogle Scholar
Kowalczyk, G, Richter, D, Risch, H and Winter, KP (1977) Zur zeitlichen Einstufung der tektogenetischen Ereignisse auf dem Peloponnes (Griechenland). (The timing of the tectogenetic development of the Peloponnesus, Greece). Neues Jahrbuch fuer Geologie und Palaeontologie, Monatshefte 9, 541–64.Google Scholar
Kopp, K-O and Richter, D (1983) Synorogenetische Schuttbildungen und die Eigenständigkeit der Phyllit-Gruppe auf Kreta. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 165, 228–53.Google Scholar
Krumbein, WC and Sloss, LL (1963) Stratigraphy and Sedimentation, 2nd edn. San Francisco: W.H. Freeman and Company, 660 pp.Google Scholar
Less, G, Özcan, E, Papazzoni, CA and Stockar, R (2008) The middle to late Eocene evolution of nummulitid foraminifer Heterostegina in the Western Tethys. Acta Palaeontologica Polonica 53, 317–50.CrossRefGoogle Scholar
Longerich, HP, Jackson, SE and Günther, D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11, 899904.CrossRefGoogle Scholar
Ludwig, KR (1999) User’s Manual for Isoplot/Ex, version 2.10, a Geochronological Toolkit for Microsoft Excel. Berkeley, CA: Berkeley Geochronology Center Special Publication.Google Scholar
Manutsoglu, E, Mertmann, D and Jacobshagen, V (1993) Zur faziellen Entwicklung triassischer Gesteinsfolgen der Tripolitza-Plattform in Süd-Lakonien (Peloponnes/Griechenland). Zeitschrift der Deutschen Geologischen Gesellschaft 144, 396405.CrossRefGoogle Scholar
Marsellos, AE, Kidd, WSF and Garver, JI (2010) Extension and exhumation of the HP/LT rocks in the Hellenic fore-arc ridge. American Journal of Science 310, 136.CrossRefGoogle Scholar
Massonne, H-J and Schreyer, W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contributions to Mineralogy and Petrology 96, 212–24.CrossRefGoogle Scholar
Massonne, H-J and Szpurka, Z (1997) Thermodynamic properties of White Micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-H2O and K2O-FeO-Al2O3-SiO2-H2O. Lithos 41, 229–50. doi: 10.1016/S0024-4937(97)82014-2 CrossRefGoogle Scholar
Müller, W, Shelley, M, Miller, P and Broude, S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laserablation cell. Journal of Analytical Atomic Spectrometry 24, 209–14. doi: 10.1039/B805995K.CrossRefGoogle Scholar
Mullis, J, Ferreiro-Mählmann, R and Wolf, M (2017) Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270 °C), illite Kübler-Index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science 143, 307–19. doi: 10.1016/j.clay.2017.03.023.CrossRefGoogle Scholar
Nuriel, P, Weinberger, R, Kylander-Clark, ARC, Hacker, BR and Craddock, JP (2017) The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 45, 587.CrossRefGoogle Scholar
Özcan, E, Ali, N, Hanif, M, Hashmi, SI, Khan, A, et al. (2016a) New Priabonian Heterostegina from the Eastern Tethys (Sulaiman fold belt, West Pakistan): implications for the development of Eastern Tethyan heterostegines and their paleobiogeography. Journal of Foraminiferal Research 46, 393408.CrossRefGoogle Scholar
Özcan, E, Less, G, Okay, A, Báldi-Beke, M, Kollányi, K and Yilmaz, İ (2010) Stratigraphy and larger foraminifera of the Eocene shallow marine and olistostromal units of the southern part of the Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences 19, 2777.Google Scholar
Özcan, E, Saraswati, PK, Hanif, M and Ali, N (2016b) Orthophragminids with new axial thickening structures from the Bartonian of the Indian subcontinent. Geologica Acta 14, 261–82.Google Scholar
Özcan, E, Yücel, AO, Erbay, S, Less, G, Kaygili, S, Ali, N and Hanif, M (2019) Reticulate Nummulites (N. fabianii Linage) and age of the Pellatispira-Beds of the Drazinda formation, Sulaiman Range, Pakistan. International Journal of Paleobiology and Paleontology 2, 000105.CrossRefGoogle Scholar
Papanikolaou, D and Vassilakis, E (2010) Thrust faults and extensional detachment faults in Cretan tectono-stratigraphy: implications for Middle Miocene extension. Tectonophysics 488, 233–47. doi: 10.1016/j.tecto.2009.06.024.CrossRefGoogle Scholar
Papazzoni, CA, Ćosović, V, Briguglio, A and Drobne, K (2017) Towards a calibrated larger foraminifera biostratigraphic zonation: celebrating 18 years of the application of shallow benthic zones. Palaios 32, 14.CrossRefGoogle Scholar
Pettijohn, FJ (1957) Sedimentary Rocks, 2nd Edn. New York: Harper and Brothers, 718 pp.Google Scholar
Postma, G and Drinia, H (1993) Architecture and sedimentary facies evolution of a marine, expanding outer-arc half-graben (Crete, late Miocene). Basin Research 5, 103–24.CrossRefGoogle Scholar
Purton, LMA and Brasier, MD (1999) Giant protist Nummulites and its Eocene environment: life span and habitat insights from δ18O and δ13C data from Nummulites and Venericardia, Hampshire basin, UK. Geology 27, 711–4.2.3.CO;2>CrossRefGoogle Scholar
Rahl, JM, Anderson, KM, Brandon, MT and Fassoulas, C (2005) Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters 240, 339–54.CrossRefGoogle Scholar
Raitzsch, M, Kuhnert, H, Hathorne, EC, Groeneveld, J and Bickert, T (2011) U/Ca in benthic foraminifers: a proxy for the deep-sea carbonate saturation. Geochemistry, Geophysics, Geosystems 12, 112.CrossRefGoogle Scholar
Rasbury, ET and Cole, JM (2009) Directly dating geologic events: U-Pb dating of carbonates. Reviews of Geophysics 47, 127.CrossRefGoogle Scholar
Renz, C (1913) Geologische Studien im Artemisiongebirge (Grenze von Arkadien und Argolis). In Beiträge zur Geologie von Hellas und der angrenzenden Gebiete (eds Renz, C. & Frech, F.). Zentralblatt für Mineralogie, Geologie und Palaeontologie 1913, 338–46.Google Scholar
Renz, C (1955) Die vorneogene Stratigraphie der normalsedimentären Formationen Griechenlands. Athens: Institute for Geology and Subsurface Research, 637pp.Google Scholar
Richards, DA, Bottrell, SH, Cliff, RA, Strohle, K and Rowe, PJ (1998) U-Pb dating of a speleothem of Quaternary age. Geochimica et Cosmochimica Acta 62, 3683–8.CrossRefGoogle Scholar
Richter, D (1976) Das Flysch-Stadium der Helleniden – Ein Überblick. Zeitschrift der Deutschen Geologischen Gesellschaft 127, 467–83.CrossRefGoogle Scholar
Ring, U, Brachert, T and Fassoulas, C (2001) Middle Miocene graben development in Crete and its possible relation to large-scale detachment faults in the southern Aegean. Terra Nova 13, 297304.CrossRefGoogle Scholar
Ring, U, Fassoulas, C, Uysal, IT, Bolhar, R, Tong, K and Todd, A (2022) Nappe imbrication within the Phyllite-Quartzite Unit of West Crete: Implications for sustained high-pressure metamorphism in the Hellenide subduction orogen, Greece. Tectonics 41, e2022TC007430. doi: 10.1029/2022TC007430.CrossRefGoogle Scholar
Rittner, M and Müller, W (2011) Dating Brittle deformation with the U-Pb method. Geophysical Research Abstracts 13, EGU2011-13443; EGU General Assembly 2011.Google Scholar
Ring, U and Gerdes, A (2016) Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics 35, 1367–91. doi: 10.1002/2015TC004085.CrossRefGoogle Scholar
Ring, U and Yngwe, F (2018) “To Be, or Not to Be, That Is the Question”—The Cretan Extensional Detachment, Greece. Tectonics 37, 3069–84. doi: 10.1029/2018TC005179.CrossRefGoogle Scholar
Roberts, NMW and Walker, RJ (2016) U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the NE Atlantic margin. Geology 44, 531–53. doi: 10.1130/G37868.1.CrossRefGoogle Scholar
Robertson, AHF (2006) Sedimentary evidence from the south Mediterranean region (Sicily, Crete Peloponnese), used to test alternative tectonic models for the regional tectonic setting of Tethys during Late Palaeozoic-Early Mesozoic time. In Tectonic development of the Eastern Mediterranean Region (eds Robertson, AHF and Mountrakis, D), 260, pp. 91154. London, United Kingdom: Geological Society of London, Special Publications.Google Scholar
Robertson, AHF (2012) Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. International Geology Review 54, 373454.CrossRefGoogle Scholar
Russell, AD, Emerson, S, Nelson, BK, Erez, J and Lea, DW (1994) Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochimica et Cosmochimica Acta 58, 671–81.CrossRefGoogle Scholar
Schaub, H (1981) Nummulites et Assilines de la Téthys Paléogène. Taxonomie, phylogenèse et biostratigraphie. Schweizerische Paläontologische Abhandlungen 1981, 104–106.Google Scholar
Schmidt, N-H and Olesen, NO (1989) Computer-aided determination of crystal-lattice orientation from electron-channeling patterns in the SEM. Canadian Mineralogist 27, 1522.Google Scholar
Seidel, E, Kreuzer, H and Harre, W (1982) A late Oligocene/early Miocene high pressure belt in the external Hellenides. Geologisches Jahrbuch E23, 165206.Google Scholar
Seidel, E and Wachendorf, H (1986) Die Südägäische Inselbrücke. In Geologie von Griechenland (ed Jacobshagen, V), pp. 5480. Berlin: Borntraeger.Google Scholar
Serra-Kiel, J, Hottinger, L, Caus, E, Drobne, K, Ferrandez, F, Jauhri, AK, et al. (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société géologique de France 169, 281–99.Google Scholar
Seybold, L, Trepmann, CA and Janots, E (2018) A ductile extensional shear zone at the contact area between HP-LT metamorphic units in the Talea Ori, central Crete, Greece: deformation during early stages of exhumation from peak metamorphic conditions. International Journal of Earth Sciences 108, 213–27. doi: 10.1007/s00531-018-1650-6.CrossRefGoogle Scholar
Smith, PE, Brand, U and Farquhar, RM (1994) U-Pb systematics and alteration trends of Pennsylvanian-aged aragonite and calcite. Geochimica et Cosmochimica Acta 58, 313–22.CrossRefGoogle Scholar
Stampfli, GM and Kozur, H (2006) Europe from the Variscan to the Alpine cycles. In European Lithosphere Dynamics (eds Gee, DG and Stephenson, RA), 32, pp. 5782, Memoir, London, United Kingdom: Geological Society of London.Google Scholar
Sturchio, NC, Antonio, MR, Soderholm, L, Sutton, SR and Brannon, JC (1998) Tetravalent uranium in calcite. Science 281, 971–3.CrossRefGoogle ScholarPubMed
ten Veen, JH and Meijer, PT (1998) Late Miocene to recent tectonic evolution of Crete (Greece): geological observations and model analysis. Tectonophysics 298, 191208.CrossRefGoogle Scholar
ten Veen, JH and Postma, G (1999) Neogene tectonics and basin fill patterns in the Hellenic outer-arc (Crete, Greece). Basin Research 11, 223–41.CrossRefGoogle Scholar
Thomson, SN, Stöckhert, B and Brix, MR (1998) Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology 26, 259–62.2.3.CO;2>CrossRefGoogle Scholar
Thomson, SN, Stöckhert, B and Brix, MR (1999) Miocene high-pressure metamorphic rocks of Crete, Greece: rapid exhumation by buoyant escape. Geological Society of London, Special Publications 154, 87107.CrossRefGoogle Scholar
Thorbecke, G (1976) Nachweis von Tripolitza-Flysch auf der Insel Kasos/Griechenland. Zeitschrift der Deutschen Geologischen Gesellschaft 127, 125–31.CrossRefGoogle Scholar
Tsaila-Monopolis, S (1977) Micropaleontological and stratigraphical study of the Tripolitza (Gavrovo) Zone in the Peloponnesus. Geol. Geophys. Res., Institute for Geology and Subsurface Research, Athens 20, 199.Google Scholar
van Hinsbergen, DJJ and Meulenkamp, JE (2006) Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Research 18, 103–24. doi: 10.1111/j.1365-2117.2005.00282.x.CrossRefGoogle Scholar
Weremeichik, JM, Gabitov, RI, Thien, BMJ and Sadekov, A (2017) The effect of growth rate on uranium partitioning between individual calcite crystals and fluid. Chemical Geology 450, 145–53.CrossRefGoogle Scholar
Wefer, G and Berger, W (1980) Stable isotopes in benthic foraminifera: seasonal variation in large tropical species. Science 209, 803.CrossRefGoogle ScholarPubMed
Xypolias, P and Kokkalas, S (2006) Heterogeneous ductile deformation along a mid-crustal extruding shear zone: an example from the External Hellenides (Greece). Geological Society, London, Special Publications 268, 497516. doi: 10.1144/GSL.SP.2006.268.01.23.CrossRefGoogle Scholar
Zachariasse, WJ, Van Hinsbergen, DJJ and Fortuin, AR (2011) Formation and fragmentation of a late Miocene supradetachment basin in central Crete: implications for exhumation mechanisms of high-pressure rocks in the Aegean forearc. Basin Research 23, 678701.CrossRefGoogle Scholar
Zambetakis-Lekkas, A, Pomoni-Papaioannou, F and Alexopoulos, A (1998) Biostratigraphical and sedimentological study of Upper Senonian—lower Eocene sediments of Tripolitza Platform in central Crete (Greece). Cretaceous Research 19, 715–32.CrossRefGoogle Scholar
Zulauf, G, Dörr, W, Marko, L and Krahl, J (2018) The late Eo-Cimmerian evolution of the External Hellenides: constraints from microfabrics and U-Pb detrital zircon ages of Upper Triassic (meta)sediments (Crete, Greece). International Journal of Earth Sciences 107, 28592894. doi: 10.1007/s00531-018-1632-8.CrossRefGoogle Scholar
Zulauf, G, Kowalczyk, G, Petschick, R, Schwanz, S and Krahl, J (2002) The tectonometamorphic evolution of high-pressure low-temperature metamorphic rocks of eastern Crete, Greece: constraints from microfabrics, strain, illite crystallinity and paleostress. Journal of Structural Geology 24, 1805–28.CrossRefGoogle Scholar
Supplementary material: File

Klein et al. supplementary material

Klein et al. supplementary material

Download Klein et al. supplementary material(File)
File 124.4 KB