Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T03:46:25.479Z Has data issue: false hasContentIssue false

Detrital zircon evidence for the linkage of the South China block with Gondwanaland in early Palaeozoic time

Published online by Cambridge University Press:  05 July 2012

LIANG DUAN*
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
QING-REN MENG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
GUO-LI WU
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
SHOU-XIAN MA
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
LIN LI
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
*
Author for correspondence: duanliang1985@gmail.com

Abstract

LA-ICP-MS U–Pb dating of Lower Devonian detrital zircon samples from three representative sections in the South China block yields dominant Grenvillian and Pan-African populations, similar to the age distribution of early Palaeozoic samples from Gondwana, the Tethyan Himalaya and West Australia, in particular. Hf isotopic compositions indicate the contributions of juvenile crust at 1.6 Ga and 2.5 Ga, and bear a resemblance to their counterparts from SE Australia and West Antarctica, revealing the mixed origin of the Pan-African and Grenvillian grains from juvenile magmas and melting of pre-existing crustal rocks. These results suggest that the South China block should be considered an integral part of East Gondwana in early Palaeozoic time, rather than a discrete continental block in the Palaeo-Pacific or a fragment of Laurentia.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. J., Miller, H., Aceñolaza, F. G., Toselli, A. J. & Griffin, W. L. 2011. The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Research 19, 7183.Google Scholar
Avigad, D., Stern, R.J., Beythc, M., Miller, N. & Mcwilliams, M. O. 2007. Detrital zircon U–Pb geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian–Nubian Shield. Precambrian Research 154, 88106.Google Scholar
Blanco, G., Germs, G. J. B., Rajesh, H. M., Chemale, F. Jr., Dussin, I. A. & Justino, D. 2011. Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): petrography, geochemistry and U–Pb detrital zircon geochronology. Precambrian Research 187, 1532.Google Scholar
Boger, S. D. 2011. Antarctica - before and after Gondwana. Gondwana Research 19, 335–71.CrossRefGoogle Scholar
Boger, S. D., Wilson, C. J. L. & Fanning, C. M. 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana? Geology 29, 463–6.Google Scholar
Burrett, C., Long, J. & Stait, B. 1990. Early-Middle Palaeozoic biogeography of Asian terranes derived from Gondwana. In Palaeozoic Paleogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.), pp. 163–74. Geological Society of London Memoirs no. 12.Google Scholar
Cawood, P. A. & Nemchin, A. A. 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology 134, 209–34.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society, London 159, 631–44.Google Scholar
Collins, A. S. 2006. Madagascar and the amalgamation of Central Gondwana. Gondwana Research 9, 316.Google Scholar
Collins, A. S. & Pisarevsky, S. A. 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian orogens. Earth-Science Reviews 71, 229–70.Google Scholar
Collo, G., Astini, R. A., Cawood, P. A., Buchan, C. & Pimentel, M. 2009. U–Pb detrital zircon ages and Sm–Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic–early Palaeozoic evolution of the proto-Andean margin of Gondwana. Journal of the Geological Society, London 166, 303–19.CrossRefGoogle Scholar
Condie, K. C., Bickford, M. E., Aster, R. C., Belousova, E. & Scholl, D. W. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of America Bulletin 123, 951–7.Google Scholar
Dalziel, I. W. D. 1997. Neoproterozoic-Palaeozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 109, 1642.Google Scholar
DeCelles, P. G., Carrapa, B. & Gehrels, G. E. 2007. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology 35, 323–6.CrossRefGoogle Scholar
DeCelles, P. G., Gehrels, G. E., Quade, J., Lareau, B. & Spurlin, M. 2000. Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288, 497–9.CrossRefGoogle ScholarPubMed
Duan, L., Meng, Q. R., Zhang, C. L. & Liu, X. M. 2011. Tracing the position of South China Block in Gondwana: U–Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research 19, 141–9.Google Scholar
Evans, D. A. D., Li, Z. X., Kirschvink, J. L. & Wingate, M. T. D. 2000. A high-quality mid-Proterozoic paleomagnetic pole from South China, with implications for an Australia–Laurentia connection at 755 Ma. Precambrian Research 100, 213–34.Google Scholar
Evans, D. A. D. & Mitchell, R. N. 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39, 443–6.Google Scholar
Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2005. Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry 58, 277303.Google Scholar
Flowerdew, M. J., Millar, I. L., Curtis, M. L., Vaughan, A. P. M., Horstwood, M. S. A., Whitehouse, M. J. & Fanning, C. M. 2007. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geological Society of America Bulletin 119, 275–88.CrossRefGoogle Scholar
Fortey, R. A. & Cocks, L. R. M. 2003. Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions. Earth-Science Reviews 61, 245307.Google Scholar
Goodge, J. W., Williams, I. S. & Myrow, P. M. 2004. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: detrital record of rift-, passive-, and active-margin sedimentation. Geological Society of America Bulletin 116, 1253–79.CrossRefGoogle Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside out? Science 252, 1409–12.Google Scholar
Hofmann, M., Linnemann, U., Rai, V., Becker, S., Gärtner, A. & Sagawe, A. 2011. The India and South China cratons at the margin of Rodinia – synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses. Lithos 123, 176–87.Google Scholar
Huang, K., Opdyke, N. D. & Zhu, R. 2000. Further paleomagnetic results from the Silurian of the Yangtze block and their implications. Earth and Planetary Science Letters 175, 191202.Google Scholar
Ireland, T. R., Flöttmann, T., Fanning, C. M., Gibson, G. M. & Preiss, W. V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology 26, 243–6.Google Scholar
Jiang, G., Sohl, L. E. & Christie-Blick, N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): paleogeographic implications. Geology 31, 917–20.Google Scholar
Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580–3.Google Scholar
Kolodner, K., Avigad, D., McWilliams, M., Wooden, J. L., Weissbrod, T. & Feinstein, S. 2006. Provenance of north Gondwana Cambrian–Ordovician sandstone: U–Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geological Magazine 143, 367–91.Google Scholar
Komar, P. D. 2007. The entrainment, transport, and sorting of heavy minerals by waves and currents. In Heavy Minerals in Use (eds Mange, M. A. & Wright, D. T.), pp. 348. Developments in Sedimentology, no. 58. Amsterdam: Elsevier.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S. N., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and breakup history of Rodinia: a synthesis. Precambrian Research 160, 179210.Google Scholar
Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F. & Yang, Y. H. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research 174, 117–28.Google Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.Google Scholar
Li, Z. X. & Powell, C. M. 2001. An outline of the paleogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237–77.Google Scholar
Li, Z. X., Zhang, L. & Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–10.2.3.CO;2>CrossRefGoogle Scholar
Li, X. H., Zhao, J. X., McCulloch, M. T., Zhou, G. Q. & Xing, F. M. 1997. Geochemical and Sm–Nd isotopic study of Neoproterozoic ophiolites from southeastern China: petrogenesis and tectonic implication. Precambrian Research 81, 129–44.Google Scholar
Liu, X. M., Gao, S., Diwu, C. R. & Ling, W. L. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of Science 308, 421–68.Google Scholar
Meert, J. G. 2001. Growing Gondwana and rethinking Rodinia: a paleomagnetic perspective. Gondwana Research 4, 279–88.CrossRefGoogle Scholar
Meert, J. G. & Torsvik, T. H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261–88.Google Scholar
Meng, Q. R., Wang, E. & Hu, J. M. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geological Society of America Bulletin 117, 396410.Google Scholar
Metcalfe, I. 1996 a. Pre-Cretaceous evolution of SE Asian terranes. In Tectonic Evolution of Southeast Asia (eds Hal, R. & Blundell, D.), pp. 97122. Geological Society of London, Special Publications no. 106.Google Scholar
Metcalfe, I. 1996 b. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys. Australian Journal of Earth Sciences 43, 605–23.Google Scholar
Metcalfe, I. 2006. Palaeozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research 9, 2446.Google Scholar
Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S., Bhargava, O. N., Parcha, S. K. & Pogue, K. R. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin 122, 1660–70.Google Scholar
Nie, S. 1991. Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstruction of South China, North China and Tarim. Tectonophysics 196, 279305.Google Scholar
Powell, C. M. & Pisarevsky, S. A. 2002. Late Neoproterozoic assembly of East Gondwana. Geology 30, 36.Google Scholar
Qiu, X. F., Ling, W. L., Liu, X. M., Kusky, T., Berkana, W., Zhang, Y. H., Gao, Y. J., Lu, S. S., Kuang, H. & Liu, C. X. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research 191, 101–19.Google Scholar
Wang, Y., Zhang, F., Fan, W., Zhang, G., Chen, S., Cawood, P. A. & Zhang, A. 2010. Tectonic setting of the South China Block in the early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29, TC6020, doi: 10.1029/2010TC002750,16 pp.Google Scholar
Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L. & Gehrels, G. E. 2011. Detrital zircon provenance from three turbidite depocenters of the Middle–Upper Triassic Songpan-Ganzi complex, central China: record of collisional tectonics, erosional exhumation, and sediment production. Geological Society of America Bulletin 122, 2041–62.Google Scholar
Wu, L., Jia, D., Li, H., Deng, F. & Li, Y. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity. Geological Magazine 147, 974–80.Google Scholar
Yang, Z., Sun, Z., Yang, T. & Pei, J. 2004. A long connection (750–380 Ma) between South China and Australia: paleomagnetic constraints. Earth and Planetary Science Letters 220, 423–34.Google Scholar
Yao, J., Shu, L. & Santosh, M. 2011. Detrital zircon U–Pb geochronology, Hf-isotopes and geochemistry – new clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research 20, 553–67.Google Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L. J., Griffin, W. L., Zhang, M., Wang, R. C., Jiang, S. Y. & Shu, L. S. 2008. Where was South China in the Rodinia supercontinent? Evidence from U–Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research 164, 115.Google Scholar
Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Günther, D., Fontaine, G. H., Liu, X. M. & Diwu, C. R. 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chemical Geology 247, 100–18.Google Scholar
Zhao, X. X. & Coe, R. S. 1987. Paleomagnetic constraints on the collision and rotation of north and south China. Nature 327, 141–4.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91123.Google Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. & Li, J. W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299302.CrossRefGoogle Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. Q. & Ding, J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Late Proterozoic arc magmatism along the western margin of the Yangtze block, South China. Earth and Planetary Science Letters 196, 5167.Google Scholar
Zhu, R. X., Yang, Z. Y., Wu, H. N., Ma, X. H., Huang, B.C., Meng, Z. F. & Fang, D. J. 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China during the Phanerozoic. Science in China (Series D) 28, 4455.Google Scholar
Supplementary material: File

Duan Supplementary Material

Table 1

Download Duan Supplementary Material(File)
File 156.7 KB