Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T01:05:57.529Z Has data issue: false hasContentIssue false

Detrital zircon geochronology and sandstone provenance of basement Waipapa Terrane (Triassic–Cretaceous) and Cretaceous cover rocks (Northland Allochthon and Houhora Complex) in northern North Island, New Zealand

Published online by Cambridge University Press:  16 July 2012

C. J. ADAMS
Affiliation:
GNS Science, Private Bag 1930 Dunedin 9054, New Zealand
N. MORTIMER
Affiliation:
GNS Science, Private Bag 1930 Dunedin 9054, New Zealand
H. J. CAMPBELL*
Affiliation:
GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand
W. L. GRIFFIN
Affiliation:
ARC Centre of Excellence for Core to Crust Fluid Systems, and Key Centre for Geochemical Evolution and Metallogeny of Continents, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
*
Author for correspondence: h.campbell@gns.cri.nz

Abstract

Detrital zircon U–Pb ages are reported for 14 sandstones of mainly Cretaceous age from the Northland Allochthon, Houhora Complex and Waipapa Terrane of northern North Island, New Zealand. Results from the Waipapa Terrane samples, selected from sequences in the Bay of Plenty, Coromandel Peninsula and Great Barrier Island, show that deposition continued into late Early Cretaceous time and, as in the Torlesse Composite Terrane, finally waned at c. 110–114 Ma. Upper Lower Cretaceous and Upper Cretaceous sedimentary successions in the Houhora Complex and Northland Allochthon have dominant sediment sources derived from local, contemporary volcanism, with a minor older contribution from the Murihiku Terrane to the west. As in eastern North Island, upper Upper Cretaceous sandstones lack major Albian magmatic components and their sources are solely in the Murihiku Terrane, and possibly the Western Province. We propose a Cretaceous palaeogeographic model that invokes a recently extinct orogen and a partially submerged continental borderland, dissected by rivers supplying submarine fans.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. J. 2003. K-Ar geochronology of Torlesse Supergroup metasedimentary rocks in Canterbury, New Zealand. Journal of the Royal Society of New Zealand 33, 165–87.Google Scholar
Adams, C. J., Campbell, H. J. & Griffin, W. R. 2007. Provenance comparisons of Permian to Jurassic tectonostratigraphic terranes in New Zealand: perspectives from detrital zircon age patterns. Geological Magazine 144, 701–29.Google Scholar
Adams, C. J., Campbell, H. J. & Griffin, W. L. 2009. Tracing the Caples Terrane through New Zealand using detrital zircon age patterns and radiogenic isotope signatures. New Zealand Journal of Geology and Geophysics 52, 223–45.CrossRefGoogle Scholar
Adams, C. J. & Graham, I. J. 1997. Age of metamorphism of Otago Schist in eastern Otago and determination of protoliths from initial strontium isotope characteristics. New Zealand Journal of Geology and Geophysics 40, 275–86.Google Scholar
Adams, C. J. & Maas, R. 2004. Age/isotopic characterisation of the Waipapa Group in Northland and Auckland, New Zealand, and implications for the status of the Waipapa Terrane. New Zealand Journal of Geology and Geophysics 47, 73187.CrossRefGoogle Scholar
Adams, C. J., Mortimer, N., Campbell, H. J. & Griffin, W. L. 2009. Age and isotopic characterisation of metasedimentary rocks from the Torlesse Supergroup and Waipapa Group in the central North Island, New Zealand. New Zealand Journal of Geology and Geophysics 52, 149–70.Google Scholar
Adams, C. J., Mortimer, N., Campbell, H. J. & Griffin, W. L. 2011. An extension of the Kaweka Terrane into northern South Island, New Zealand: preliminary evidence from Rb-Sr metamorphic and U-Pb detrital zircon ages. New Zealand Journal of Geology and Geophysics 54, 291309.CrossRefGoogle Scholar
Adams, C. J., Mortimer, N., Campbell, H. J. & Griffin, W. L. In press. The mid-Cretaceous transition from basement to cover within sedimentary rocks of eastern New Zealand, evidence from detrital zircon age patterns. Geological MagazineGoogle Scholar
Aita, Y. & Spörli, K. B. 1992. Tectonic and paleobiogeographic significance of radiolarian microfaunas in the Permian to Mesozoic basement rocks of the North Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 96, 103–25.Google Scholar
Aita, Y. & Spörli, K. B. 1994. Late Triassic radiolaria from the Torlesse Terrane, Rimutaka Range, North Island, New Zealand. New Zealand Journal of Geology and Geophysics 37, 155–62.Google Scholar
Black, P. M. 1994. “The Waipapa Terrane”, North Island, New Zealand, subdivision and correlation. Geoscience Reports of Shizuoka University 20, 5562.Google Scholar
Cawood, P. A., Nemchin, A. A., Leverenz, A., Saeed, A. & Ballance, P. F. 1999. U/Pb dating of detrital zircons: implications for the provenance record of Gondwana margin terranes. Geological Society of America Bulletin 111, 1107–9.2.3.CO;2>CrossRefGoogle Scholar
Cluzel, D., Adams, C. J., Meffre, S., Campbell, H. J. & Maurizot, P. 2010 a. Discovery of Early Cretaceous rocks in New Caledonia: new geochemistry and U-Pb zircon age constraints on the transition from subduction to marginal breakup in the Southwest Pacific. Journal of Geology 118, 381–97.Google Scholar
Cluzel, D., Black, P. M., Picard, C. & Nicholson, K. N. 2010 b. Geochemistry and tectonic setting of Matakaoa Volcanics, East Coast Allochthon, New Zealand: supra-subduction zone affinity, regional correlations and origin. Tectonics 29, TC2013, doi: 10.1029/2009TC002454.CrossRefGoogle Scholar
Cooper, R. A. (ed.) 2004. A New Zealand Geological Timescale. Institute of Geological & Nuclear Sciences Monograph 22, 284 pp.Google Scholar
Edbrooke, S. W. (ed.) 2001. Geology of the Auckland Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 3, 74 pp.Google Scholar
Edbrooke, S. W. & Brook, F. J. (eds) 2009. Geology of the Whangarei Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 2, 68 pp.Google Scholar
Ewing, T. A., Weaver, S. D., Bradshaw, J. D., Turnbull, I. M. & Ireland, T. R. 2007. Loch Burn Formation, Fiordland, New Zealand: SHRIMP U-Pb ages, geochemistry and provenance. New Zealand Journal of Geology and Geophysics 50, 167–80.Google Scholar
Field, B. D., Uruski, C. I., Beu, A., Browne, G., Crampton, J., Funnell, R., Killops, S., Laird, M., Mazengarb, C., Morgans, H., Rait, G., Smale, D. & Strong, P. 1997. Cretaceous and Cenozoic Development and Hydrocarbon Geology of a Plate Margin, East Coast Region, New Zealand. Institute of Geological and Nuclear Sciences Monograph 19, 301 pp.Google Scholar
Hayward, B. W. & Moore, P. R. 1987. Geology of the Three Kings Islands. Records of the Auckland Institute and Museum 24, 215–32.Google Scholar
Isaac, M. J. (ed.) 1996. Geology of the Kaitaia Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1: 250 000 Geological Map 1, 44 pp.Google Scholar
Isaac, M. J., Herzer, R. H., Brooks, F. J. & Hayward, B. W. 1994. Cretaceous and Cenozoic Sedimentary Basins of Northland, New Zealand. Institute of Geological & Nuclear Sciences Monograph 8, 203 pp.Google Scholar
Kear, D. 1971. Basement rock facies – northern North Island. New Zealand Journal of Geology and Geophysics 14, 275–83.CrossRefGoogle Scholar
Korsch, R. J. & Wellman, H. W. 1988. The geological evolution of New Zealand and the New Zealand region. In The Ocean Basins and Margins, Vol. 7, The Pacific Ocean (eds Nairn, A. E. M., Stehli, F. C. & Uyeda, S.), pp. 411–82. New York: Plenum.Google Scholar
Lee, J. M. & Begg, J. G. (eds) 2002. Geology of the Wairarapa Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 11, 66 pp.Google Scholar
Leonard, G. S., Begg, J. G. & Wilson, C. J. N. (eds) 2011. Geology of the Rotorua Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 5, 99 pp.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, USA: Berkeley Geochronological Center, Special Publication 4, 73 pp.Google Scholar
Mazengarb, C. & Harris, D. H. M. 1994. Cretaceous stratigraphic and structural relationships of Raukumara Peninsula, New Zealand: stratigraphic patterns associated with the migration of a thrust system. Annales Tectonicae 8, 100–18.Google Scholar
Mazengarb, C. & Speden, I. G. (eds) 2000. Geology of the Raukumara Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 6, 60 pp.Google Scholar
Moore, P. R. & Kenny, J. A. 1985. Geology of northeastern Great Barrier Island, (Needles Point to Rangiwhakaea Bay), New Zealand. Journal of the Royal Society of New Zealand 15, 235–50.Google Scholar
Mortimer, N. 1993. Metamorphic zones, terranes, and Cenozoic faults in the Marlborough Schist, New Zealand. New Zealand Journal of Geology and Geophysics 36, 357–68.Google Scholar
Mortimer, N. 1994. Origin of the Torlesse Terrane and coeval rocks, North Island, New Zealand. International Geology Review 36, 891910.Google Scholar
Mortimer, N., Tulloch, A. J. & Ireland, T. R. 1997. Basement geology of Taranaki and Wanganui Basins, New Zealand. New Zealand Journal of Geology and Geophysics 40, 223–68.CrossRefGoogle Scholar
Mortimer, N., Tulloch, A. J, Gans, P., Calvert, A. & Walker, N. 1999 a. Geology and thermochronometry of the east edge of the Median Tectonic Batholith (Median Tectonic Zone): a new perspective on Permian to Cretaceous crustal growth of New Zealand. The Island Arc 8, 404–25.Google Scholar
Mortimer, N., Tulloch, A. J, Spark, R. N, Walker, N. W, Ladley, E., Allibone, A. & Kimbrough, D. L. 1999 b. Overview of the Median Batholith, New Zealand: a new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. Journal of African Earth Sciences 29, 257–68.Google Scholar
Muir, R. J., Weaver, S. D, Bradshaw, J. D., Eby, G. N. & Evans, J. A. 1995. The Separation Point Batholith, New Zealand: granitoid magmas formed by the melting of mafic lithosphere. Journal of the Geological Society, London 152, 689701.Google Scholar
Nicholson, K. N., Black, P. M. & Spörli, K. B. 2008. Cretaceous-Oligocene multiphase magmatism on Three Kings Islands, northern New Zealand. New Zealand Journal of Geology and Geophysics 51, 219–29.Google Scholar
Pickard, A. L, Adams, C. J. & Barley, M. E. 2000. Australian provenances for Upper Permian to Cretaceous rocks forming accretionary complexes on the New Zealand sector of the Gondwanaland margin. Australian Journal of Earth Sciences 47, 9871007.CrossRefGoogle Scholar
Rait, G. J. 2000. Thrust transport directions in the Northland Allochthon, New Zealand. New Zealand Journal of Geology and Geophysics 43, 271–88.CrossRefGoogle Scholar
Rattenbury, M. S., Townsend, D. B. & Johnston, M. R. (eds) 2006. Geology of the Kaikoura Area. Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 13, 70 pp.Google Scholar
Roser, B. P. & Korsch, R. J. 1986. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data. Chemical Geology 67, 119–39.Google Scholar
Skinner, D. N. B. 1972. Subdivision and petrology of the Mesozoic rocks of Coromandel (Manaia Hill group). New Zealand Journal of Geology and Geophysics 15, 203–27.CrossRefGoogle Scholar
Speden, I. G. 1976. Fossil localities in Torlesse Rocks of the North Island, New Zealand. Journal of the Royal Society of New Zealand 6, 7391.CrossRefGoogle Scholar
Spörli, K. B. 1978. Mesozoic tectonics, North Island, New Zealand. Geological Society of America Bulletin 89, 415–25.Google Scholar
Spörli, K. B. & Grant-Mackie, J. A. 1976. Upper Jurassic fossils from the Waipapa Group of Tawharanui Peninsula, North Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 19, 2134.Google Scholar
Spörli, K. B., Takemura, A. & Hori, R. (eds) 2007. The Oceanic Permian/Triassic Boundary Sequence at Arrow Rocks (Oruatemanu) Northland, New Zealand. GNS Science Monograph 24, 229 pp.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Toy, V. G. & Spörli, K. B. 2008. Stratigraphic and structural evidence for an accretionary precursor to the Northland Allochthon, Mt Camel Terrane, northernmost New Zealand. New Zealand Journal of Geology and Geophysics 51, 331–47.CrossRefGoogle Scholar
Tulloch, A. J., Kimbrough, D. L. & Wood, R. A. 1991. Carboniferous granite basement dredged from a site on the southwest margin of the Challenger Plateau, Tasman Sea. New Zealand Journal of Geology and Geophysics 34, 121–6.Google Scholar
Tulloch, A. J., Ramezani, J., Mortimer, N., Mortensen, J., Van den Bogaard, P. & Maas, R. 2009. Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana break-up. In Extending a Continent, Architecture, Rheology and Heat Budgets (eds Ring, U. & Wernicke, R.), pp. 89118. Geological Society of London, Special Publication no. 21.Google Scholar
Turnbull, I. M., Allibone, A. H. & Jongens, R. 2010. Geology of the Fiordland Area. Lower Hutt: Institute of Geological & Nuclear Sciences 1:250 000 Geological Map 17, 97 pp.Google Scholar
Uruski, C. I. 2010. New Zealand's deep-water frontier. Marine and Petroleum Geology 27, 2005–26.Google Scholar
Veevers, J. J. (ed.) 2000. Billion Year History of Australia and Neighbours in Gondwanaland. Sydney: GEMOC Press, 388 pp.Google Scholar
Supplementary material: File

Adams et al. supplementary material

Supplementary data

Download Adams et al. supplementary material(File)
File 2.2 MB