Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Laroche, Olivier Wood, Susanna A. Tremblay, Louis A. Ellis, Joanne I. Lejzerowicz, Franck Pawlowski, Jan Lear, Gavin Atalah, Javier and Pochon, Xavier 2016. First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Marine Environmental Research, Vol. 120, p. 225.


    LANDING, ED and WESTROP, STEPHEN R. 2015. Late Cambrian (middle Furongian) shallow-marine dysoxic mudstone with calcrete and brachiopod–olenid–Lotagnostus faunas in Avalonian Cape Breton Island, Nova Scotia. Geological Magazine, Vol. 152, Issue. 06, p. 973.


    ×

First discovery of Early Palaeozoic Bathysiphon (Foraminifera) – test structure and habitat of a ‘living fossil’

  • ED LANDING (a1), SANDRA PATRUCCO REYES (a2), AMANDA L. ANDREAS (a2) and SAMUEL S. BOWSER (a2)
  • DOI: http://dx.doi.org/10.1017/S0016756812000155
  • Published online: 12 April 2012
Abstract
Abstract

The giant, agglutinated foraminiferan Bathysiphon Sars, previously Triassic–Recent, occurs in much older sedimentary rock (Early Ordovician, late early Tremadocian) of Avalonia. The genus extends back to c. 485 Ma based on its discovery in platform mudstone of the Chesley Drive Group in Cape Breton Island, Nova Scotia. Elongate (up to 60 mm), epibenthic Bathysiphon tubes occur in wave-rippled, green-grey mudstone with a low diversity, probably dysoxic fauna. The mudstone is coeval with and lithologically similar to the Shineton Formation in Shropshire and the Welsh Borderlands. Scanning microscopy of the Bathysiphon walls shows imbricated mica grains that parallel the long axis of the tests. The lumen has a mélange of packed sediment grains, some of which are spherical structures of siliciclastic mud studded with tetrahedral pyrite crystals. A felt-like, agglutinated test, a lumen packed with spherical structures (probable stercomata) and the domal ends of some specimens are consistent with modern Bathysiphon. This report is the first time that cytoplasmic activity and stercomata formation have been used to refer fossil protists to a modern group. Bathysiphon differs from the Cambrian foraminiferan Platysolenites Pander, which has an open lumen without stercomata, but support a comparable, sediment deposit-feeding niche. Bathysiphon is truly a ‘living fossil’, with a mode of test construction, cytoplasmic activity that formed stercomata and a niche unchanged for almost 500 million years. Foraminiferans have not been found prior to the Cambrian Period, and the Early Cambrian appearance of agglutinated foraminiferans is part of the radiation of Phanerozoic communities.

Copyright
Corresponding author
Author for correspondence: elanding@mail.nysed.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. M. Adl , G. B. Simpson , M. A. Farmer , R. A. Andersen , O. R. Anderson , J. R. Barta , S. S. Bowser , G. Brugerolle , R. A. Fensome , S. Fredericq , T. Y. James , S. Karpov , P. Kugrens , S. Krug , C. E. Lane , L. A. Lewis , J. Lodge , D. H. Lynn , D. G. Mann , R., M. McCourt , L. Mendoza , Ø Moestrup , S. E. Mozley-Standridge , T. A. Nerad , C. A. Shearer , A., V. Smirnov , F. W. Spiegel & M. F. J. R. Taylor 2005. The new higher level classification of eucaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52, 399451.

J. B. Antcliffe , A. J. Gooday & M. D. Brasier 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus. Palaeontology 54, 1157–75.

T. Bosak , D. J. G. Lahr , S. B. Pruss , F. A. Macdonald , A. J. Gooday , L. Dalton & E. D. Matys 2011. Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates. Geology 40, 6770.

C. Callaway 1877. On a new area of Upper Cambrian rocks in south Shropshire, with a description of a new fauna. Quarterly Journal of the Geological Society of London 33, 652–72.

N. G. Cartwright , A. J. Gooday & A. R. Jones 1989. The morphology, internal organization, and taxonomic position of Rhizammina algaeformis Brady, a large, agglutinated deep-sea foraminifer. Journal of Foraminiferal Research 19, 115–25.

N. Clauer & A. Kröner 1979. Strontium and argon isotopic homogenization of pelitic sediments during low-grade regional metamorphism: the Pan-African Upper Damara Sequence of northern Namibia. Earth and Planetary Science Letters 43, 117–31.

S. J. Culver 1991. Early Cambrian Foraminifera from west Africa. Science 254, 689–91.

S. J. Culver 1994. Early Cambrian Foraminifera from the southwestern Taoudeni Basin, west Africa. Journal of Foraminiferal Research 24, 191238.

D. Fliegel , R. Wirth , A. Simonetti , H. Furnes , H. Staudigel , E. Hanski & K. Muehlenbachs 2010. Septate-tubular textures in 2.0-Ga pillow lavas from the Pechenga Greensgone Belt: a nano-spectroscopic approach to investigate their biogenicity. Geobiology 8, 373–90.


A. J. Gooday 1988. The genus Bathysiphon (Protista, Foraminiferida) in the NE Atlantic: revision of some species described by de Folin. Journal of Natural History 22, 7193.

A. J. Gooday & S. S. Bowser 2005. The second species of Gromia (Protista) from the deep sea: its natural history and association with the Pakistan margin Oxygen Minimum Zone. Protist 156, 113–26.

A. J. Gooday , D. W. Pond & S. S. Bowser 2002. Ecology and nutrition of the large agglutinated foraminiferan Bathysiphon capillare in the bathyal NE Atlantic: distribution within the sediment profile and lipid biomarker composition. Marine Ecology Progress Series 245, 6982.

H. Hua , Z. Chen , X.-L. Yuan , S.-L. Xiao & Y.-P. Cai 2010. The earliest foraminifera from southern Shaanxi, China. Science China, Earth Sciences 53, 1756–64.

K. A. Johnson , S. J. Culver & D. L. Kamola 2005. Marginal marine Foraminifera of the Blackhawk Formation (Late Cretaceous, Utah). Journal of Foraminiferal Research 35, 5064.

C. A. Landis 1971. Graphitization of dispersed carbonaceous material in metamorphic rocks. Contributions to Mineralogy and Petrology 30, 3445.

E. Landing 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics 37, 411–35.

E. Landing 2005. Early Paleozoic Avalon–Gondwana unity: an obituary – response to “Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions” by R. A. Fortey and L. R. M. Cocks. Earth-Science Reviews 69, 169–75.

E. Landing , S. A. Bowring , R. A. Fortey & K. L. Davidek 1997. U-Pb zircon date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. Canadian Journal of Earth Sciences 34, 724–30.

E. Landing , A. English & J. D. Keppie 2010. Cambrian origin of all skeletalized metazoan phyla – discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38, 547–50.

E. Landing & R. A. Fortey 2011. Tremadocian (Lower Ordovician) biotas and sea-level changes on the Avalon microcontinent. Journal of Paleontology 85, 680–96.

E. Landing , G. Geyer & K. E. Bartowski 2002. Latest Early Cambrian small shelly fossils, trilobites, and Hatch Hill dysaerobic interval on the east Laurentian continental slope. Journal of Paleontology 76, 285303.

A. C. Maloof , S. M. Porter , J. L. Moore , F. Ö Dudás , S. A. Bowring , J. A. Higgins , D. A. Fike & M. P. Eddy 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.

D. McIlroy , O. R. Green & M. D. Brasier 2001. Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34, 1329.

W. Miller 1987. Giant Bathysiphon (Foraminiferida) from Cretaceous turbidites, northern California. Lethaia 21, 363–74.

W. Miller 2005. Giant Bathysiphon (Astrorhizina: Foraminifera) from the Cretaceous Hunders Cove Formation, southwestern Oregon. Journal of Paleontology 79, 389–94.

W. Miller 2008. A Bathysiphon (Foraminifera) ‘shell bed’ from the Cretaceous of northern California, USA: example of a parautochthonous macro-skeletal deposit in deep-sea turbidites. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 342–6.

H. A. Nicholson 1873. Contributions to the study of the errant annelids of the older Palaeozoic rocks. Royal Society of London Proceedings 21, 288–90.


J. Pawlowski , M. Holzmann , C. Berney , J. Fahrni , A. J. Gooday , T. Cedhagen , A. Habura & S. S. Bowser 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences 100, 11494–8.

S. M. Porter , R. Meisterfeld & A. H. Knoll 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology 77, 409–29.

D. B. Saja , H. W. Pfefferkorn & S. P. Phillips 2009. Bathysiphon (Foraminiferida) at Pacheo Pass, California: a geopetal, paleocurrent, and paleobathymetric indicator in the Franciscan complex. Palaios 24, 181–91.

D. B Scott , F. Medioli & R. Braund 2003. Foraminifera from the Cambrian of Nova Scotia: the oldest multichambered foraminifera. Micropaleontology 49, 109–26.


D. Vachard , L. Pille & J. Gaillot 2010. Palaeozoic Foraminifera: systematics, palaeoecology and responses to global changes. Revue de Micropaléontologie 53, 209–54.

T. M. Winchester-Seeto & D. McIlroy 2006. Lower Cambrian melanosclerites and foraminiferal linings from the Lontova Formation, St. Petersburg, Russia. Review of Palaeobotany and Palynology 139, 71–9.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: