Skip to main content
×
Home
    • Aa
    • Aa

Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution

  • XIAO-FEI QIU (a1) (a2), XIAO-MING ZHAO (a2), HONG-MEI YANG (a1) (a2), SHAN-SONG LU (a1) (a2), NIAN-WEN WU (a2), TUO JIANG (a1) (a2), TAO GU (a2) and YUN-FENG WANG (a1) (a3)...
Abstract
Abstract

Palaeoproterozic metasedimentary rocks, also referred to as khondalites, characterized by Al-rich minerals, are extensively exposed in the nucleus of the Yangtze craton, South China block. Samples of garnet–sillimanite gneiss in the khondalite suite were collected from the Kongling complex for Nd isotopic and elemental geochemical study. These rocks are characterized by variable SiO2 contents ranging from 35.71 to 58.07 wt%, and have low CaO (0.45–0.84 wt%) but high Al2O3 (18.56–29.04 wt%), Cr (174–334 ppm) and Ni (42.5–153 ppm) contents. They have high CIW (Chemical Index of Weathering) values (90.4–94.7), indicating intense chemical weathering of the source material. The samples display light rare earth elements (LREE) enrichment with negative Eu anomalies (Eu/Eu*=0.40–0.68), and have flat heavy rare earth elements (HREE) patterns. The high contents of transition elements (e.g. Cr, Ni, Sc, V) and moderately radiogenic Nd isotopic compositions suggest that the paragneisses might be those of first-cycle erosion products of predominantly mafic rocks mixing with small amounts of felsic moderately evolved Archaean crustal source. Geochemical and Nd isotopic compositions reveal that at least some of the protoliths of Kongling khondalite were sourced from local pre-existing mafic igneous rocks in a continental arc tectonic setting. Combined with documented zircon U–Pb geochronological data, we propose that the Palaeoproterozoic high-pressure granulite-facies metamorphism, rapid weathering, erosion and deposition of the khondalites in the interior of the Yangtze craton might be related to a Palaeoproterozoic collisional orogenic event during 2.1–1.9 Ga, consistent with the worldwide contemporary orogeny, implying that the Yangtze craton may have been an important component of the Palaeoprotorozoic Columbia supercontinent.

Copyright
Corresponding author
Author for correspondence: qiuxiaofei@geochemist.cn
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

X. Bai , W. L. Ling , R. C. Duan , X. F. Qiu , C. X. Liu , H. Kuang , Y. J. Gao , L. Zhou , Z. W. Chen & S. S. Lu 2011. Mesoproterozoic to Paleozoic Nd isotope stratigraphy of the South China continental nucleus and its geological significance. Science China Earth Sciences 54, 1665–74.

P. Barbey , R. Capdevila & J. Hameurt 1982. Major and trace element abundances in the khondalite suite of the granulite belt of Lapland (Fennoscandia): evidence for an Early Proterozoic flysch belt. Precambrian Research 16, 273–90.

M. R. Bhatia 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology 91, 611–27.

M. R. Bhatia 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology 45, 97113.

M. R. Bhatia & K. A. Crook 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.

R. Bolhar , S. D. Weaver , M. J. Whitehouse , J. M. Palin , J. D. Woodhead & J. W. Cole 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters 268, 312–24.

P. Bouilhol , U. Schaltegger , M. Chiaradia , M. Ovtcharova , A. Stracke , J. P. Burg & H. Dawood 2011. Timing of juvenile arc crust formation and evolution in the Sapat Complex (Kohistan-Pakistan). Chemical Geology 280, 243–56.

P. A. Cawood & I. M. Tyler 2004. Assembling and reactivating the Proterozoic Capricorn Orogen: lithotectonic elements, orogenies, and significance. Precambrian Research 128, 201–18.

P. A. Cawood , Y. Wang , Y. Xu & G. Zhao 2013. Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology 41, 903–6.

K. Chen , S. Gao , Y. B. Wu , J. L. Guo , Z. C. Hu , Y. S. Liu , K. Q. Zong , Z. W. Liang & X. L. Geng 2013. 2.6–2.7 Ga crustal growth in Yangtze craton, South China. Precambrian Research 224, 472–90.

K. C. Condie , M. D. Boryta , J. Liu & X. Qian 1992. The origin of khondalite: geochemical evidence from the Archean to early Proterozoic granulite belt in the North China Craton. Precambrian Research 59, 207–23.

J. G. Crichton & K. C. Condie 1993. Trace elements as source indicators in cratonic sediments: a case study from the Early Proterozoic Libby Creek Group, Southeastern Wyoming. Journal of Geology 101, 319–32.

R. L. Cullers , A. Basu & L. J. Suttner 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology 70, 335–48.

J. S. Daly , V. V. Balagansky , M. J. Timmerman , M. J. Whitehouse , K. D. Jong , P. Guise , S. Bogdanova , R. Gorbatschev & D. Bridgwater 2001. Ion microprobe U/Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield. Precambrian Research 105, 289314.

D. J. Depaolo , A. M. Linn & G. Schubert 1991. The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research 96, 2071–88.

J. Dostal 1975. The origin of garnet-cordierite-sillimanite bearing rocks from Chandos Township, Ontario. Contributions to Mineralogy and Petrology 49, 163–75.

P. W. Fralick & B. I. Kronberg 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology 113, 111–24.

S. Gao , W. L. Ling , Y. M. Qiu , L. Zhou , G. Hartmann & K. Simon 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta 63, 2071–88.

R. F. Ge , W. B. Zhu , H. L. Wu , J. W. He & B. H. Zheng 2013. Zircon U–Pb ages and Lu–Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla Complex, NW China: implications for metamorphic zircon formation and geological evolution of the Tarim Craton. Precambrian Research 231, 118.

S. Ghosh & S. Sarkar 2010. Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: clues for provenance. Chemical Geology 277, 78100.

J. L. Guo , Y. B. Wu , S. Gao , Z. M. Jin , K. Q. Zong , Z. C. Hu , K. Chen , H. H. Chen & Y. S. Liu 2015. Episodic Paleoarchean-Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: implications for late Archean tectonics. Precambrian Research 270, 246–66.

B. R. Hacker , L. Ratschbacher , L. Webb , T. Ireland , D. Walker & S. Dong 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth and Planetary Science Letters 161, 215–30.

L. Harnois 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55, 319–22.

P. F. Hoffman 1988. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543603.

H. D. Holland & K. K. Turekian 2014. Treatise on Geochemistry, 10 vols. Amsterdam: Elsevier, 9144 pp.

A. Kröner , P. Jaeckel , G. Brandl , A. A. Nemchin & R. T. Pidgeon 1999. Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance. Precambrian Research 93, 299337.

Z. Li , B. Chen , C. J. Wei , C. X. Wang & W. Han 2015. Provenance and tectonic setting of the Paleoproterozoic metasedimentary rocks from the Liaohe Group, Jiao-Liao-Ji Belt, North China Craton: insights from detrital zircon U–Pb geochronology, whole-rock Sm–Nd isotopes, and geochemistry. Journal of Asian Earth Sciences 111, 711–32.

L. M. Li , S. F. Lin , W. J. Xiao , C. Q. Yin , D. W. Davis & G. F. Xing 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research 255, 3047.

J. H. Li , X. L. Qian & S. W. Liu 2000. Geochemistry of khondalites from the central portion of North China craton (NCC): implications for the continental cratonization in the Neoarchean. Science China Earth Sciences 43, 253–65.

Y. H. Li , J. P. Zheng , Q. Xiong , W. Wang , X. Q. Ping , X. Y. Li & H. Y. Tang 2016. Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Research 276, 158–77.

Y. S. Liu , S. Gao , Z. C. Hu , C. G. Gao , K. Q. Zong & D. B. Wang 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.

I. Meyer , G. R. Davies & J. B. W. Stuut 2011. Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: an example from deep-sea sediments offshore NW Africa. Geochemistry, Geophysics, Geosystems 12, 120–30.

H. W. Nesbitt , G. M. Young & S. A. Bosman 2009. Major and trace element geochemistry and genesis of supracrustal rocks of the North Spirit Lake Greenstone belt, NW Ontario, Canada. Precambrian Research 174, 1634.

J. L. Payne , K. M. Barovich & M. Hand 2006. Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: implications for Palaeoproterozoic reconstructions. Precambrian Research 148, 275–91.

S. B. Peng , T. M. Kusky , X. F. Jiang , L. Wang , J. P. Wang & H. Deng 2012. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research 21, 577–94.

Y. M. Qiu , S. Gao , N. J. Mcnaughton , D. I. Groves & W. Ling 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 1114.

X. F. Qiu , W. L. Ling , X. M. Liu , T. Kusky , W. Berkana , Y. H. Zhang , Y. J. Gao , S. S. Lu , H. Kuang & C. X. Liu 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research 191, 101–19.

X. F. Qiu , H. M. Yang , S. S. Lu , W. L. Ling , L. G. Zhang , J. J. Tan & Z. X. Wang 2015 a. Geochronology and geochemistry of Grenville-aged (1063±16 Ma) metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton. International Geology Review 57, 7696.

J. J. W. Rogers & M. Santosh 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research 5, 522.

D. K. Roy & B. P. Roser 2013. Climatic control on the composition of Carboniferous–Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research 23, 1163–71.

M. Santosh , T. Morimoto & Y. Tsutsumi 2006. Geochronology of the khondalite belt of Trivandrum Block, Southern India: electron probe ages and implications for Gondwana tectonics. Gondwana Research 9, 261–78.

M. Santosh , T. Tsunogae , J. H. Li & S. J. Liu 2007. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research 11, 263–85.

Y. S. Wan , B. Song , D. Y. Liu , S. A. Wilde , J. S. Wu , Y. R. Shi , X. Y. Yin & H. Y. Zhou 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–71.

B. L. Weaver & J. Tarney 1981. Lewisian gneiss geochemistry and Archaean crustal development models. Earth and Planetary Science Letters 55, 171–80.

D. J. Wronkiewicz & K. C. Condie 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401–16.

Y. B. Wu , S. Gao , H. J. Gong , H. Xiang , W. F. Jiao , S. H. Yang , Y. S. Liu & H. L. Yuan 2009. Zircon U–Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Paleoproterozoic high-grade metamorphism. Journal of Metamorphic Geology 27, 461–77.

Y. B. Wu & Y. F. Zheng 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin 49, 1554–69.

F. Y. Wu , Y. B. Zhang , J. H. Yang , L. W. Xie & Y. H. Yang 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research 167, 339–62.

L. Zhang , Q. Y. Wang , N. S. Chen , M. Sun , M. Santosh & J. Ba 2014. Geochemistry and detrital zircon U-Pb and Hf isotopes of the paragneiss suite from the Quanji massif, SE Tarim Craton: implications for Paleoproterozoic tectonics in NW China. Journal of Asian Earth Sciences 95, 3350.

S. B. Zhang , Y. F. Zheng , Y. B. Wu , Z. F. Zhao , S. Gao & F. Y. Wu 2006 a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146, 1634.

S. B. Zhang , Y. F. Zheng , Y. B. Wu , Z. F. Zhao , S. Gao & F. Y. Wu 2006 b. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.

S. B. Zhang , Y. F. Zheng , Z. F. Zhao , Y. B. Wu & H. L. Yuan 2008. Neoproterozoic anatexis of Archean lithosphere: geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research 163, 210–38.

G. C. Zhao , P. A. Cawood , S. A. Wilde & M. Sun 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.

G. C. Zhao , M. Sun , S. A. Wilde & S. Z. Li 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.

J. H. Zhao , M. F. Zhou & J. P. Zheng 2013. Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China. Precambrian Research 233, 93107.

J. B. Zhou & S. A. Wilde 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research 23, 1365–77.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 117 *
Loading metrics...

* Views captured on Cambridge Core between 7th March 2017 - 28th June 2017. This data will be updated every 24 hours.