Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T02:37:48.493Z Has data issue: false hasContentIssue false

Geochronology and geochemistry of the c. 80 Ma Rutog granitic pluton, northwestern Tibet: implications for the tectonic evolution of the Lhasa Terrane

Published online by Cambridge University Press:  11 June 2008

TAI-PING ZHAO*
Affiliation:
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P.R. China
MEI-FU ZHOU
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Hong Kong, P.R. China
JUN-HONG ZHAO
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Hong Kong, P.R. China
KAI-JUN ZHANG
Affiliation:
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P.R. China
WEI CHEN
Affiliation:
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P.R. China
*
Author for correspondence: tpzhao@gig.ac.cn

Abstract

The Rutog granitic pluton lies in the Gangdese magmatic arc in the westernmost part of the Lhasa Terrane, NW Tibet, and has SHRIMP zircon U–Pb ages of c. 80 Ma. The pluton consists of granodiorite and monzogranite with SiO2 ranging from 62 to 72 wt% and Al2 O3 from 15 to 17 wt%. The rocks contain 2.33–4.93 wt% K2O and 3.42–5.52 wt% Na2O and have Na2O/K2O ratios of 0.74–2.00. Their chondrite-normalized rare earth element (REE) patterns are enriched in LREE ((La/Yb)n = 15 to 26) and do not show significant Eu anomalies (δEu = 0.68–1.15). On a primitive mantle-normalized trace element diagram, the rocks are rich in large ion lithophile elements (LILE) and poor in high field strength elements (HFSE), HREE and Y. Their Sr/Y ratios range from 15 to 78 with an average of 30. The rocks have constant initial 87Sr/86Sr ratios (0.7045 to 0.7049) and slightly positive ɛNd(t) values (+0.1 to +2.3), similar to I-type granites generated in an arc setting. The geochemistry of the Rutog pluton is best explained by partial melting of a thickened continental crust, triggered by underplating of basaltic magmas in a mantle wedge. The formation of the Rutog pluton suggests flat subduction of the Neo-Tethyan oceanic lithosphere from the south. Crustal thickening may have occurred in the Late Cretaceous prior to the India–Asia collision.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J. C., Badengzhu, D. A. M., Liu, J., Luo, H., Malpas, J., McDermid, I., Wu, H., Ziabrev, S. & Zhou, M. F. 2000. Remnants of a Cretaceous intraoceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters 183, 231–44.CrossRefGoogle Scholar
Allègre, C. J. & 34 others. 1984. Structure and evolution of the Himalayan–Tibet orogenic belt. Nature 307, 1722.CrossRefGoogle Scholar
Barbarin, B. 1996. Genesis of the two main types of peraluminous granitoids. Geology 24, 295–8.2.3.CO;2>CrossRefGoogle Scholar
Castillo, P. R., Janney, P. E. & Solidum, R. U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 3351.CrossRefGoogle Scholar
Chang, C. F. & Zheng, S. L. 1973. Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China. Scientia Geological Sinica 1, 11–2 (in Chinese with English abstract).Google Scholar
Chappell, B. W. 1996. Magma mixing and the production of compositional variation within granite suites: evidence from the granites of Southeastern Australia. Journal of Petrology 37, 449–70.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh 83, 126.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48, 489–99.CrossRefGoogle Scholar
Coulon, C., Maluski, H., Bollinger, C. & Wang, S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters 79, 281302.CrossRefGoogle Scholar
De la Roche, H., Leterrier, J., Grand Claude, P. & Marchal, M. 1980. A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses – its relationship with current nomenclature. Chemical Geology 29, 183210.CrossRefGoogle Scholar
Drummond, M. S. & Defant, M. J. 1990. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95, 21503–21.CrossRefGoogle Scholar
Goto, A. & Tatsumi, Y. 1996. Quantitative analyses of rock samples by X-ray fluorescence spectrometer (II). Rigaku-Denki Journal 13, 2039 (in Japanese).Google Scholar
Harris, N. B. W., Xu, R. H., Lewis, C. L., Hawkesworth, C. & Zhang, Y. Q. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society, London A327, 263–85.Google Scholar
Hodges, K. V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. GSA Bulletin 112, 324–50.2.0.CO;2>CrossRefGoogle Scholar
Johannes, W. & Holtz, F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer, 335 pp.CrossRefGoogle Scholar
Kapp, J. L. D., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M. & Ding, L. 2005. The Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research 110, B08413.CrossRefGoogle Scholar
Kapp, P., Murphy, M. A., Yin, A., Harrison, T. M., Ding, L. & Guo, J. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22, 1029.CrossRefGoogle Scholar
Kapp, P., Yin, A., Harrison, T. M. & Ding, L. 2005. Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bulletin 117, 865–78.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, G. J. & Qi, C. S. 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos 96, 186204.CrossRefGoogle Scholar
Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N. & Shadaev, M. G. 2002. Crystal fractionation in the petrogenesis of an alkali monzodiorite–syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia. Lithos 64, 97130.CrossRefGoogle Scholar
Lu, S. W., Zhang, L. & Ren, J. D. 2004. Zonality of the Gangdese magmatic arc on the Qinghai–Tibet plateau and geological significance. Geological Bulletin of China 23, 1023–32 (in Chinese with English abstract).Google Scholar
Ludwig, K. R. 2001. Squid 1.02: A user's manual. Berkeley Geochronology Center, Special Publication no. 2, 19 pp.Google Scholar
Matte, P., Tapponnier, P., Arnaud, N., Bourjot, L., Avouac, J. P., Vidaal, P., Liu, Q., Pan, Y. & Wang, Y. 1996. Tectonics of western Tibet between the Tarim and Indus. Earth and Planetary Science Letters 142, 311–30.CrossRefGoogle Scholar
Mo, X. X., Zhao, Z. D., Deng, J. F., Dong, G. C., Zhou, S., Guo, T. Y., Zhang, S. Q. & Wang, L. L. 2003. Response of volcanism to the India–Asia collision. Earth Science Frontiers 10, 135–48.Google Scholar
Molnar, P. & Tapponnier, P. 1975. Cenozoic tectonics of Asia; effects of a continental collision. Science 189, 419–26.CrossRefGoogle ScholarPubMed
Murphy, M. A., Yin, A., Harrison, T. M., Dürr, S. B., Chen, Z., Ryerson, F. J., Kidd, W. S. F., Wang, X. & Zhou, X. 1997. Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25, 719–22.2.3.CO;2>CrossRefGoogle Scholar
Pan, G. T., Mo, X. X., Hou, Z. Q., Zhu, D. C., Wang, L. Q., Li, G. M., Zhao, Z. D., Geng, Q. R. & Liao, Z. L. 2006. Spatial-temporal framework of the Gangdes Orogenic Belt and its evolution. Acta Petrologica Sinica 22, 521–33.Google Scholar
Pan, G. T., Wang, L. Q. & Li, X. Z. 2002. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Tibet Plateau. Sedimentary Geology and Tethyan Geology 21, 126 (in Chinese with English abstract).Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pierce, J. A. & Mei, H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud. Philosophical Transactions of the Royal Society, London A327, 203–13.Google Scholar
Pitcher, W. S. 1982. Granite type and tectonic environment. In Mountain Building Processes (ed. Hsu, K. J.), pp. 1940. London: Academic Press.Google Scholar
Pitcher, W. S. 1993. The Nature and Origin of Granite. London: Blackie Academic and Professional, 321 pp.CrossRefGoogle Scholar
Qi, L., Hu, J. & Gregoire, D. C. 2000. Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talanta 51, 507–13.Google Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology 36, 891931.CrossRefGoogle Scholar
Rapp, R. P., Ryerson, F. J. & Miller, C. F. 1987. Experimental evidence bearing on the stability of monazite during crustal anatexis. Geophysical Research Letters 14, 307–10.CrossRefGoogle Scholar
Rapp, R. P., Watson, E. B. & Miller, C. F. 1991. Partial melting of amphibolite/ecolgite and the origin of Archaean trondhjemites and tonalites. Precambrian Presearch 51, 125.CrossRefGoogle Scholar
Ratschbacher, L., Frisch, W., Lui, G. & Chen, C. 1994. Distributed deformation in southern and western Tibet during and after the India–Asia collision. Journal of Geophysical Research (Part B) 99, 19817–945.Google Scholar
Sen, C. & Dunn, T. 1994. Experimental modal metasomatism of spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy and Petrology 119, 422–32.CrossRefGoogle Scholar
Shannon, J. R., Walker, B. M., Carten, R. B. & Geraghty, E. P. 1982. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology 10, 293–7.2.0.CO;2>CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the ocean basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, W.-H. & Zhou, M.-F. 2008. The 860-Ma, Cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China: implications for the origin of Neoproterozoic magmatism. Journal of Geology 116, doi: 10.1086/587881, in press.CrossRefGoogle Scholar
Tanaka, T. & 18 others. 2004. JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chemical Geology 168, 279–81.Google Scholar
TBGMR (Tibetan Bureau of Geology and Mineral Resources). 1993. Regional geology of Xizang (Tibet) Autonomous Region. Beijing: Geological Publishing House. Geological Memoirs 1 (31), 699 pp. (in Chinese with English abstract).Google Scholar
Wang, Q., McDermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33, 465–8.CrossRefGoogle Scholar
Wang, Y. J., Fan, W. M., Sun, M., Liang, X. Q., Zhang, Y. H. & Peng, T. P. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos 96, 475502.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C. & Sun, D. Y. 2003 a. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67, 191204.CrossRefGoogle Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C., Sun, D. Y. 2003 b. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66, 241–73.Google Scholar
Xiong, X. L., Adam, J. & Green, T. H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology 218, 339–59.CrossRefGoogle Scholar
Xu, J. F., Shinjio, R., Defant, M. J., Wang, Q. & Rapp, R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 32, 1111–14.2.0.CO;2>CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A., Xie, L. W., Yang, Y. H. & Liu, X.-M. 2007. Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology 153, 177–90.Google Scholar
Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.CrossRefGoogle Scholar
Yin, A., Harrison, T. M., Ryerson, F. J., Chen, W., Kidd, W. S. F. & Copeland, P. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research (Part B) 99, 18175–201.CrossRefGoogle Scholar
Zhao, T. P., Zhai, M. G., Xia, B., Li, H. M., Zhang, Y. X. & Wan, Y. S. 2004. Study on the zircon SHRIMP ages of the Xiong'er Group volcanic rocks: constraints on the starting time of covering strata in the North China Craton. Chinese Science Bulletin 9, 2495–502.CrossRefGoogle Scholar
Zhao, J. H. & Zhou, M. F. 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos doi:10.1016/j.lithos.2007.12.009, in press.CrossRefGoogle Scholar
Zhou, M. F., Malpas, J., Robinson, P. T. & Reynolds, P. H. 1997. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Canadian Journal of Earth Sciences 34, 5965.CrossRefGoogle Scholar