Skip to main content
×
Home
    • Aa
    • Aa

Geological history of bathyal echinoid faunas, with a new genus from the late Cretaceous of Italy

  • ANDREW B. SMITH (a1)
Abstract
Abstract

The Scaglia Rossa of central and northern Italy yields a late Cretaceous bathyal echinoid fauna. Comparison with Jurassic and Cenozoic bathyal faunas highlights that (i) there have been at least three phases of colonization of bathyal settings from the continental shelves, with successive faunas replacing the earlier; and (ii) bathyal echinoid faunas encompass an increasing range of feeding strategies and greater diversity of taxa through time, paralleling increasing nutrification of the oceans. A new Santonian deep-sea spatangoid, Bathyovulaster disjunctus gen. et sp. nov., is described from sediments deposited at > 1500 m water depth at Gubbio, Umbria–Marche region, Italy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Geological history of bathyal echinoid faunas, with a new genus from the late Cretaceous of Italy
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Geological history of bathyal echinoid faunas, with a new genus from the late Cretaceous of Italy
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Geological history of bathyal echinoid faunas, with a new genus from the late Cretaceous of Italy
      Available formats
      ×
Copyright
Corresponding author
*E-mail: a.smith@nhm.ac.uk
References
Hide All
Agassiz L. 1840. Catalogus systematicus Ectyporum Echinodermatum fossilium Musei Neocomiensis, secundum ordinem zoologicum dispositus; adjectis synonymis recentioribus, nec non stratis et locis in quibus reperiuntur. Sequuntur characteres diagnostici generum novorum vel minus cognitorum. Neuchâtel: Oliv. Petitpierre, 20 pp.
Airaghi C. 1903. Echinidi della Scaglia Cretacea Veneta. Memorie della Reale Accademia della Scienze di Torino serie seconda 533, 16330, pls 12.
Airaghi C. 1907. Un nuovo genere della sottofamiglia delle Echinocorynae. Atti della Societa Italiana di Scienze Naturali e del Museo Civio di Storia Naturale in Milano 45, 107–10.
Airaghi C. 1931. Fossili della Scaglia Cretacea del Trentino. Atti della Societa Italiana di Scienze Naturali e del Museo Civio di Storia Naturale in Milano 70, 240–4.
Alvarez W. 2009. The historical record in the Scaglia limestone and Gubbio: magnetic reversals and the Cretaceous–Tertiary mass extinction. Sedimentology 56, 137–48.
Astolfi G. & Colombara G. 2003. Geologia e Paleontologia dei Colli Euganei, 2nd ed. Treviso: Edizioni Canova, 238 pp.
Beaulieu S. E. 2002. Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology Annual Reviews 40, 171232.
Cardenas A. L. & Harries P. J. 2010. Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nature Geoscience 3, 430–4.
Catullo T. A. 1827. Saggio di Zoologia fossile delle provincie venete. Padova: Dalla tipografia del Seminario, 348 pp., 8 pls.
Falkowski P. G., Katz M. E., Knoll A. H., Quigg A., Raven J. A., Schofield O. & Taylor F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305, 354–60.
Gage J. D. 1987. Growth of the deep-sea irregular sea urchins Echinosigra phiale and Hemiaster expergitus in the Rockall Trough (N. E. Atlantic Ocean). Marine Biology 96, 1930.
Gaillard C., Neraudeau D. & Thierry J. 2011. Tithonia oxfordiana, a new Jurassic irregular echinoid associated with Jurassic seep deposits in south-east France. Palaeontology 54, 735–52.
Galeotti S., Bellagamba M., Kaminski M. A. & Montanari A. 2002. Deep-sea benthic foraminiferal recolonisation following a volcanoclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy). Marine Micropaleontology 44, 5776.
Gallagher W. B. 2002. Faunal changes across the Cretaceous-Tertiary (K-T) boundary in the Atlantic coastal plain of New Jersey: restructuring the marine community after the K-T mass-extinction event. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Kpeberl C. & MacLeod K. G.), pp. 291301. Geological Society of America Special Paper 356.
Giusberti L., Fantin M. & Buckeridge J. 2005. Ovulaster protodecimae, n. sp. (Echinoidea, Spatangoia) and association epifauna (Cirripedia, Verrucidae) from the Danian of northeastern Italy. Rivisat Italiana di Paleontologia e Stratigrafia 111, 453–62.
Kikuchi Y. & Nikaido A. 1985. The first occurrence of abyssal echinoid Pourtalesia from the middle Miocene Tatsukuroiso Mudstone in Ibaraki Prefecture, northeastern Honshu, Japan. Annual Report of the Institute of Geoscience, The University of Tsukuba 11, 32–4.
Kroh A. & Smith A. B. 2010. The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology 8, 147212.
Lambert J. 1896. Note sur quelques Échinides Crétacé de Madagascar. Bulletin de la Société géologique de France, Serie 3 24, 313–32.
Leckie R. M., Bralower T. J. & Cashman R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 1041, doi: 10.1029/2001PA000623, 29 pp.
Lowrie W. & Alvarez W. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy. III. Upper Cretaceous magnetic stratigraphy. Geological Society of America Bulletin 88, 364–77.
Martin R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11, 209–19.
Martin R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 36, 179–94.
Martin R. E., Quigg A. & Podkovyrov V. 2008. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 277291.
Monechi S. & Thierstein H. R. 1985. Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlation near Gubbio, Italy. Marine Micropalaeontology 9, 419–40.
Ooster W. A. 1865. Synopsis des Echinodermes fossiles des alpes suisses. Pétrifications remarquables des Alpes suisses. Genève et Bâle, Librairie H. Georg, 131 pp.
Premoli Silva I. & Sliter W. V. 1995. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione Section, Gubbio, Italy. Palaeontographica Italica 82, 189.
Rex M. A., McClain C. R., Johnson N. A., Eter R. J., Allen J. A., Bouchet P. & Waren A. 2005. A source-sink hypothesis for abyssal biodiversity. The American Naturalist 165, 163–78.
Smith A. B. 2004. Phylogeny and systematics of holasteroid echinoids and their migration into the deep-sea. Palaeontology 47, 123–50.
Smith A. B. & Crame J. A. 2012. Echinoderm faunas from the Lower Cretaceous (Aptian–Albian) of Alexander Island, Antarctica. Palaeontology 55, 305–24.
Smith A. B. & Gale A. S. 2009. The pre-Messinian deep-sea Neogene echinoid fauna of the Mediterranean: surface productivity controls and biogeographical relationships. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 115–25.
Smith A. B., Gallemi J., Jeffery C. H., Ernst G. & Ward P. D. 1999. Late Cretaceous–early Tertiary echinoids from northern Spain: implications for the Cretaceous–Tertiary extinction event. Bulletin of the Natural History Museum, London (Geology) 55 (2), 81137.
Smith A. B. & Jeffery C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392, 6971.
Smith A. B. & Kroh A. 2012. The Echinoid Directory. World Wide Web electronic publication. Available at http://www.nhm.ac.uk/research-curation/research/projects/echinoid-directory/ (accessed February, 2012).
Smith A. B. & Stockley B. 2005. The geological history of deep sea colonization by echinoids: roles of surface water productivity and deep-water ventilation. Proceedings of the Royal Society B 272, 865–9.
Stow D. A. V., Rainey S. C. R., Angell G., Wezel F. C. & Savelli D. 1984. Depositional model for calcilutites: Scaglia Rossa limestones, Umbrio–Marchean Apennines. In Fine-grained Sediments: Deep-water Processes and Facies (eds Stow D. A. V. & Piper D. J. W.), pp. 223–41. Geological Society of London, Special Publication no. 15.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 68 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.