Skip to main content Accessibility help

Late Jurassic to Early Cretaceous magmatism in the Xiong’ershan gold district, central China: implications for gold mineralization and geodynamics

  • Zhenshan Pang (a1), Fuping Gao (a2), Yangsong Du (a2), Yilun Du (a1), Zhaojian Zong (a2), Jinsong Xie (a3) and Fengpei Xin (a3)...


The Xiong’ershan area is the third largest gold-producing district in China. The Late Jurassic to Early Cretaceous magmatism in the Xiong’ershan area can be divided into two episodes: early (165–150 Ma) and late (138–113 Ma). Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) zircon U–Pb dating yields ages of 160.7 ± 0.6 Ma and 127.2 ± 1.0 Ma for the Wuzhangshan and Huashan monzogranites in the Xiong’ershan area, respectively, representing the two magmatic episodes. The Wuzhangshan monzogranites exhibit adakite-like geochemical features (e.g. high Sr/Y ratios, low Yb and Y contents). Their Sr–Nd–Hf isotopic compositions are consistent with those of the amphibolites of the Taihua Group, indicating that the Wuzhangshan monzogranites were formed from partial melting of the Taihua Group metamorphic rocks. Compared to the Wuzhangshan rocks, the Huashan monzogranites have higher MgO, Cr, Co and Ni contents, but lower Sr/Y and Fe3+/Fe2+. All the samples from the Huashan monzogranites plot in the area between the Taihua Group amphibolite rocks and the mantle rocks in the (87Sr/86Sr)t vs εNd(t) and age vs εHf(t) diagrams, suggesting that the Huashan monzogranites were probably generated by mixing of mantle-derived magmas and the Taihua Group metamorphic basement melts. The gold mineralization (136–110 Ma) is coeval with the emplacement of the late-episode magmas, implying that crustal–mantle mixed magma might be a better target for gold mineralization compared to the ancient metamorphic basement melt. The data presented in this study further indicate that the transformation of the lithosphere from thickening to thinning in the Xiong’ershan area probably occurred between ~160 Ma and ~127 Ma, and that the gold mineralization in this area was probably related to lithospheric thinning.


Corresponding author

Author for correspondence: Fuping Gao, Email:


Hide All
Anderson, T (2002) Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.
Andrade, S, Hypolito, R, Ulbrich, HHGJ and Silva, ML (2002) Iron II oxide determination in rocks and minerals. Chemical Geology 182, 85–9.
Bao, ZW, Li, CJ and Qi, JP (2009) SHRIMP zircon U-Pb age of the gabbro dyke in the Luanchuan Pb-Zn-Ag orefield, east Oinling orogen and its constraint on mineralization time. Acta Petrologica Sinica 25, 2951–6.
Bao, ZW, Sun, WD, Zartman, RE, Yao, JM and Gao, XY (2017) Recycling of subducted upper continental crust: constraints on the extensive molybdenum mineralization in the Qinling-Dabie orogen. Ore Geology Reviews 81, 451–65.
Bao, ZW, Wang, CY, Zhao, TP, Li, CJ and Gao, XY (2014) Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China. Ore Geology Reviews 57, 132–53.
Barbarin, B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80, 155–77.
Bouvier, A, Vervoort, JD and Patchett, PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.
Cao, J, Ye, HS, Chen, XD, Li, ZY, Zhang, XK and He, W (2016) Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of granite porphyry in Leimengou Mo deposit, western Henan Province. Mineral Deposits 35, 677–95 (in Chinese with English abstract).
Cao, MP, Yao, JM, Deng, XH, Yang, FJ, Mao, GZ and Mathur, R (2017) Diverse and multistage Mo, Au, Ag–Pb–Zn and Cu deposits in the Xiong’er Terrane, East Qinling: from Triassic Cu mineralization. Ore Geology Reviews 81, 565–74.
Castillo, PR, Janney, PE and Solidum, RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 3351.
Chen, YJ, Pirajno, F and Qi, JP (2008) The Shanggong gold deposit, Eastern Qinling Orogen, China: isotope geochemistry and implications for ore genesis. Journal of Asian Earth Sciences 33, 252–66.
Chu, NC, Taylor, RN, Chavagnac, V, Nesbitt, RW, Boella, RM, Milton, JA, German, CR, Bayon, G and Burton, K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.
Defant, MJ and Drummond, MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.
Deng, J, Gong, Q, Wang, C, Carranza, EJM and Santosh, M (2014) Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong’ershan region, Central China: an overview with new zircon U-Pb geochronology data on quartz porphyries. Journal of Asian Earth Sciences 79, 161–72.
Diwu, CR, Sun, Y, Lin, CL and Wang, HL (2010) LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin 55, 2557–71.
Dong, YP and Santosh, M (2016) Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research 29, 140.
Du, JG, Du, YS and Cao, Y (2018) Important role of hornblende fractionation in generating the adakitic magmas in Tongling, Eastern China: evidence from amphibole megacryst and cumulate xenoliths and host gabbros. International Geology Review, 60, 1381–403.
Gao, S, Rudnick, RL, Yuan, HL, Liu, XM, Liu, YS, Xu, WL, Ling, WL, Ayers, J, Wang, XC and Wang, QH (2004) Recycling lower continental crust in the North China Craton. Nature 432, 892–7.
Gao, XY and Zhao, TP (2017) Late Mesozoic magmatism and tectonic evolution in the Southern margin of the North China Craton. Science in China Series D: Earth Sciences 60, 1959–75.
Gao, XY, Zhao, TP, Bao, ZW and Yang, AY (2014) Petrogenesis of the early Cretaceous intermediate and felsic intrusions at the southern margin of the North China Craton: implications for crust–mantle interaction. Lithos 206–207, 6578.
Gao, XY, Zhao, TP, Yuan, ZL, Zhou, YY and Gao, JF (2010) Geochemistry and petrogenesis of the Heyu batholith in the southern margin of the North China block. Acta Petrologica Sinica 26, 3485–506.
Goldfarb, RJ, Phillips, GN and Nokleberg, WJ (1998) Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geology Reviews 13, 185218.
Griffin, WL, Pearson, NJ, Belousova, E, Jackson, SE, Van Achterbergh, E, O’Reilly, SY and Shee, SR (2000) The Hf isotope composition of cratonic mantle: LAM–MC–ICP MS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.
Griffin, WL, Wang, X, Jackson, SE, Pearson, NJ, O’Reilly, SY, Xu, X and Zhou, X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.
Groves, DI, Goldfarb, RJ, Gebre-Mariam, M, Hagemann, SG and Robert, F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13, 727.
Han, YG, Zhang, SH, Franco, P and Zhang, YH (2007) Evolution of the Mesozoic granites in the Xiong'ershan-Waifangshan region, western Henan Province, China, and its tectonic implications. Acta Geologica Sinica 81, 253265.
He, YH, Zhao, GC, Sun, M and Han, YG (2010) Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: constraints from bulk-rock geochemistry and Sr–Nd isotopic composition. Lithos 114, 186–99.
Hou, KJ, Li, YH and Tian, YR (2009) In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits 28, 481–92 (in Chinese with English abstract).
Hou, ML, Jiang, YH, Jiang, SY, Ling, HF and Zhao, KD (2007) Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: implications for crustal thickening to delamination. Geological Magazine 144, 619–31.
Huang, XL, Wilde, SA, Yang, QJ and Zhong, JW (2012) Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong’er in the southern segment of the trans-North China orogen: implications for tectonic transformation in the early Paleoproterozoic. Lithos 134–135, 236–52.
Jackson, SE, Pearson, NJ, Griffin, WL and Belousova, EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 4769.
Jacobsen, SB and Wasserburg, GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth and Planetary Science Letters 50, 139–55.
Kuritani, T, Kimura, JI, Miyamoto, T, Wei, HQ and Shimano, T (2009) Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: implications from the Changbaishan shield basalts, northeast China. Lithos 112, 247–58.
Kuritani, T, Sakuyama, T, Kamada, N, Yokoyama, T and Nakagawa, M (2017) Fluid-fluxed melting of mantle versus decompression melting of hydrous mantle plume as the cause of intraplate magmatism over a stagnant slab: implications from Fukue Volcano Group, SW Japan. Lithos 282–283, 98110.
Lapierre, H, Jahn, BM, Charvet, J and Yu, YW (1997) Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics 274, 321–38.
Li, N, Chen, YJ, Pirajno, F, Gong, HJ, Mao, SD and Ni, ZY (2012) LA-ICP-MS zircon U–Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: implications for Mesozoic tectono-magmatic evolution. Lithos 142–143, 3447.
Li, SM, Qu, LQ, Su, ZB, Huang, JJ, Wang, XS and Yue, ZS (1996) The Geology and Metallogenic Prediction of the Gold Deposit in Xiaoqinling. Beijing: Geological Publishing House, 250 pp. (in Chinese).
Li, SR and Santosh, M (2017) Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Research 50, 267–92.
Li, W, Zhao, T, Zhang, Y and Tao, N (2018) Field geology, geochronology, and isotope geochemistry of the Luyuangou gold deposit, China: implications for the gold mineralization in the eastern Qinling Orogen. Geological Journal 53, 96112.
Liew, TC and Hofmann, AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology 98, 129–38.
Liu, DY, Wilde, SA, Wan, YS, Wang, SY, Valley, JW, Kita, N, Dong, CY, Xie, HQ, Yang, CX, Zhang, YX and Gao, LZ (2009) Combined U–Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean–Early Neoarchean. Chemical Geology 261, 140–54.
Lugmair, GW and Marti, K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.
Maniar, PD and Piccoli, PM (1989) Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.
Mao, JW, Goldfarb, RJ, Zhang, ZW, Xu, WY, Qiu, YM and Deng, J (2002) Gold deposits in the Xiaoqinling–Xiong’ershan region, Qinling mountains, Central China. Mineralium Deposita 37, 306–25.
Mao, JW, Pirajno, F, Xiang, JF, Gao, JJ, Ye, HS, Li, YF and Guo, BJ (2011) Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: characteristics and tectonic settings. Ore Geology Reviews 43, 264–93.
Mao, JW, Xie, GQ, Pirajno, F, Ye, HS, Wang, YB, Li, YF, Xiang, JF and Zhao, HJ (2010) Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences 57, 5178.
Martin, H, Smithies, RH, Rapp, R, Moyen, JF and Champion, D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 124.
Middlemost, EAK (1994) Naming materials in the magma/igneous rock system. Earth Science Reviews 37, 215–24.
Morel, MLA, Nebel, O, Nebel-Jacobsen, YJ, Miller, JS and Vroon, PZ (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231–5.
Naldrett, AJ (1999) World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineralium Deposita 34, 227–40.
Naldrett, AJ (2004) Magmatic Sulfide Deposits. Heidelberg: Springer, 728 pp.
Nasdala, L, Hofmeister, W, Norberg, N, Mattinson, JM, Corfu, F, Dorr, W, Kamo, SL, Kennedy, AK, Kronz, A, Reiners, PW, Frei, D, Kosler, J, Wan, YS, Gotze, J, Hager, T, Kroner, A and Valley, J (2008) Zircon M257 – a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostandards and Geoanalytical Research 32, 247–65.
Nebel, O, Scherer, EE and Mezger, K (2011) Evaluation of the 87Rb decay constant by age comparison against the U–Pb system. Earth and Planetary Science Letters 301, 18.
Nie, ZR, Wang, XX, Ke, CH, Yang, Y and Lv, XQ (2015) Age, geochemistry and petrogenesis of Huashan granitonid pluton on the southern margin of the North China Block. Geological Bulletin of China 34, 1502–16 (in Chinese with English abstract).
Nyquist, LE, Bansal, B, Wiesmann, H and Shih, CY (1994) Neodymium, strontium and chromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and the chronology of the angrite parent body. Meteoritics 29, 872–95.
Pearce, JA (1996) Sources and settings of granitic rocks. Episodes 19, 120–5.
Peccerillo, R and Taylor, SR (1976) Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58, 6381.
Perugini, D, Poli, G, Christofides, G and Eleftheriadis, G (2003) Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves. Mineralogy and Petrology 78, 173200.
Petford, N and Atherton, M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 1491–521.
Pirajno, F (2004) Hotspots and mantle plumes: global intraplate tectonics magmatism and ore deposits. Mineralogy and Petrology 82 , 183216.
Rapp, RP, Shimizu, N and Norman, MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425, 605–9.
Rapp, RP, Shimizu, N, Norman, MD and Applegate, GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–56.
Rapp, RP, Xiao, L and Shimizu, N (2002) Experimental constraints on the origin of potassium-rich adakite in east China. Acta Petrologica Sinica 18, 293311.
Rasskazov, SV, Brandt, SB and Brandt, IS (2010) Radiogenic Isotopes in Geologic Processes. Heidelberg: Springer, 306 pp.
Ratschbacher, L, Hacker, BR, Calvert, A, Webb, LE, Crimmer, JC, McWilliams, MO, Ireland, T, Dong, S and Hu, J (2003) Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366, 153.
Salters, VJM and Stracke, A (2004) Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, 15252027
Sen, C and Dunn, T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394409.
Skjerlie, KP and Patino Douce, AE (2002) The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology 43, 291314.
Sláma, J, Košler, J, Daniel, JC., Crowley, JL., Gerdes, A, Hanchar, JM., Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008) Plešovice zircon: a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.
Soderlund, U, Patchett, PJ, Vervoort, JD and Isachsen, CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.
Sun, SS and McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds D Saunders and MJ Norry), pp. 313–45. Geological Society of London, Special Publication no. 42.
Sun, YS and Toksoz, MN (2006) Crustal structure of China and surrounding regionsfrom P wave traveltime tomography. Journal of Geophysical Research 111, B03310. doi: 10.1029/2005JB003962.
Tang, GJ, Wang, Q, Wyman, DA, Chung, SL, Chen, HY and Zhao, ZH (2017) Genesis of pristine adakitic magmas by lower crustal melting: a perspective from amphibole composition. Journal of Geophysical Research: Solid Earth 122, 1934–48.
Tang, KF (2014) Characteristics, genesis, and geodynamic setting of representative gold deposits in the Xiong’ershan district, southern margin of the North China Craton. PhD thesis, China University of Geosciences, Wuhan, China. Published thesis (in Chinese with English abstract).
Tang, KF, Li, JW, Selby, D, Zhou, MF, Bi, SJ and Deng, XD (2013) Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong’ershan area, southern North China Craton. Mineralium Deposita 48, 729–47.
Tang, L, Zhang, ST, Yang, F, Santosh, M, Li, JJ, Kim, SW, Hu, XK, Zhao, Y and Cao, HW (2019) Triassic alkaline magmatism and mineralization in the Xiong’ershan area, East Qinling, China. Geological Journal, 54, 143156.
Tian, YF, Sun, J, Ye, HS, Mao, JW, Wang, XX, Bi, MF and Xia, XP (2017) Genesis of the Dianfang breccia-hosted gold deposit, western Henan Province, China: constraints from geology, geochronology and geochemistry. Ore Geology Reviews 91, 963–80.
Van der Meer, QHA, Waight, TE and Munker, C (2017) Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand. Earth and Planetary Science Letters 469, 2741.
Van Der Meer, QHA, Waight, TE, Tulloch, AJ, Whitehouse, MJ and Anderen, T (2018) Magmatic evolution during the Cretaceous transition from subduction to continental break-up of the Eastern Gondwana margin (New Zealand) documented by in-situ zircon O–Hf isotopes and bulk-rock Sr–Nd isotopes. Journal of Petrology 59, 849–80.
Vervoort, JD, Patchett, PJ, Albarede, F, Blichert-Toft, J, Rudnick, R and Downes, H (2000) Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters 181, 115–29.
Vervoort, JD, Patchett, PJ, Sőderlund, U and Baker, M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MCICPMS: isotopic composition of Yb. Geochemistry Geophysics Geosystems 5, Q11002. doi: 10.1029/2004GC000721.
Wang, Q, Xu, JF, Jian, P, Bao, ZW, Zhao, ZH, Li, CF, Xiong, XL and Ma, JL (2006) Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: implications for the genesis of porphyry copper mineralization. Journal of Petrology 47, 119–44.
Wang, Q, Xu, JF, Zhao, ZH, Bao, ZW, Xu, W and Xiong, XL (2004) Cretaceous high-potassium intrusive rocks in the Yueshan–Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal 38, 417–34.
Wang, XL, Jiang, SY and Dai, BZ (2010) Melting of enriched Archean subcontinental lithospheric mantle: evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton. Precambrian Research 182, 204–16.
Whalen, JB, Currie, KL and Chappell, BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.
White, WM (2013) Geochemistry. Oxford: Wiley-Blackwell, 668 pp.
Windley, BF, Maruyama, S and Xiao, WJ (2010) Delamination/thinning of sub-continental lithospheric mantle under Eastern China: the role of water and multiple subduction. American Journal of Science 310, 1250–93.
Wu, FY, Yang, YH, Xie, LW, Yang, JH and Xu, P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234, 105126.
Xiao, E, Hu, J, Zhang, ZZ, Dai, BZ, Wang, YF and Li, HY (2012) Petrogeochemistry, zircon U-Pb dating and Lu-Hf isotopic compositions of the Haoping and Jinshanmiao granites from the Huashan complex batholith in eastern Qinling Orogen. Acta Petrologica Sinica 28, 4031–46.
Xie, GQ, Mao, JW, Li, RL, Ye, HS, Zhang, YX, Wan, YS, Li, HM, Gao, JJ and Zheng, RF (2007) SHRIMP zircon U-Pb dating for volcanic rocks of the Daying Formation from Baofeng basin in eastern Qinling, China and its implications. Acta Petrologica Sinica 23, 2387–96.
Xu, XS, Griffin, WL, Ma, X, O’Reilly, SY, He, ZY and Zhang, CL (2009) The Taihua group on the southern margin of the North China craton: further insights from U–Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology 97, 4359.
Yao, JM, Zhao, TP, Li, J, Sun, YL, Yuan, ZL, Chen, W and Han, J (2009) Molybdenite Re–Os age and zircon U–Pb age and Hf isotope geochemistry of the Qiyugou gold system, Henan province. Acta Petrologica Sinica 25, 374–84.
Zhai, L, Liu, YG and Jiao, YH (2011) Geological features and ore-forming age of Miaoling gold deposit in Henan. Jinlin Geology 30, 3440 (in Chinese with English abstract).
Zhang, GW, Meng, QG, Yu, ZP, Sun, Y, Zhou, DW, Guo, AL (1996) Orogenesis and dynamics of the Qinling orogen. Science in China Series D: Earth Sciences 39, 225–34.
Zhao, HX, Jiang, SY, Frimmel, HE, Dai, BZ and Ma, L (2012) Geochemistry, geochronology and Sr–Nd–Hf isotopes of two Mesozoic granitoids in the Xiaoqinling gold district: implication for large-scale lithospheric thinning in the North China Craton. Chemical Geology 294–295, 173–89.
Zhao, TP, Zhai, MG, Xia, B, Li, HM, Zhang, YX and Wan, YS (2004). Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin 22, 2342–9 (in Chinese with English abstract).
Zheng, JP, Sun, M, Lu, FX and Pearson, N (2003) Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics 361, 3760.


Type Description Title
Supplementary materials

Pang et al. supplementary material
Pang et al. supplementary material

 Unknown (12.1 MB)
12.1 MB

Late Jurassic to Early Cretaceous magmatism in the Xiong’ershan gold district, central China: implications for gold mineralization and geodynamics

  • Zhenshan Pang (a1), Fuping Gao (a2), Yangsong Du (a2), Yilun Du (a1), Zhaojian Zong (a2), Jinsong Xie (a3) and Fengpei Xin (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed