Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 115
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Condie, Kent C. 2016. Earth as an Evolving Planetary System.


    Peucker-Ehrenbrink, Bernhard Waters, Christine A. Kurz, Mark D. and Hoffman, Paul F. 2016. No evidence of extraterrestrial noble metal and helium anomalies at Marinoan glacial termination. Earth and Planetary Science Letters, Vol. 437, p. 76.


    Shields, Aomawa L. Barnes, Rory Agol, Eric Charnay, Benjamin Bitz, Cecilia and Meadows, Victoria S. 2016. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f. Astrobiology, Vol. 16, Issue. 6, p. 443.


    Tang, Chunan and Li, Sanzhong 2016. The Earth evolution as a thermal system. Geological Journal, p. n/a.


    Williams, George E. Schmidt, Phillip W. and Young, Grant M. 2016. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: Radically different climate system on the pre-Ediacaran Earth. Geoscience Frontiers, Vol. 7, Issue. 4, p. 555.


    2016. Earth as an Evolving Planetary System.


    Klein, R. Salminen, J. and Mertanen, S. 2015. Baltica during the Ediacaran and Cambrian: A paleomagnetic study of Hailuoto sediments in Finland. Precambrian Research, Vol. 267, p. 94.


    Spiegl, T.C. Paeth, H. and Frimmel, H.E. 2015. Evaluating key parameters for the initiation of a Neoproterozoic Snowball Earth with a single Earth System Model of intermediate complexity. Earth and Planetary Science Letters, Vol. 415, p. 100.


    Currie, Adrian Mitchell 2014. Narratives, mechanisms and progress in historical science. Synthese, Vol. 191, Issue. 6, p. 1163.


    Ewing, Ryan C. Eisenman, Ian Lamb, Michael P. Poppick, Laura Maloof, Adam C. and Fischer, Woodward W. 2014. New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation. Earth and Planetary Science Letters, Vol. 406, p. 110.


    Li, Hongshou Wang, Wanfu Wu, Fasi Zhan, Hongtao Zhang, Guobing and Qiu, Fei 2014. A new sand-wedge–forming mechanism in an extra-arid area. Geomorphology, Vol. 211, p. 43.


    Li, Hong-Shou Wang, Wan-Fu Ma, Jian-Hong Wu, Fa-Si Zhan, Hong-Tao and Qiu, Fei 2014. Ecological Significance of the Sand Wedge In the Extra-Arid Gobi Area. Arid Land Research and Management, Vol. 28, Issue. 3, p. 261.


    Schmidt, Phillip W. 2014. A review of Precambrian palaeomagnetism of Australia: Palaeogeography, supercontinents, glaciations and true polar wander. Gondwana Research, Vol. 25, Issue. 3, p. 1164.


    Young, Grant M. 2014. Contradictory correlations of Paleoproterozoic glacial deposits: Local, regional or global controls?. Precambrian Research, Vol. 247, p. 33.


    Jenkins, Gregory S. McKay, Christopher P. and McMenamin, Mark A. S. 2013. The Extreme Proterozoic: Geology, Geochemistry, and Climate.


    Jenkins, Gregory S. 2013. The Extreme Proterozoic: Geology, Geochemistry, and Climate.


    Levashova, Natalia M. Bazhenov, Mikhail L. Meert, Joseph G. Kuznetsov, Nikolay B. Golovanova, Inessa V. Danukalov, Konstantin N. and Fedorova, Natalia M. 2013. Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals. Precambrian Research, Vol. 236, p. 16.


    McMenamin, Mark A. S. 2013. The Extreme Proterozoic: Geology, Geochemistry, and Climate.


    Meert, Joseph G. and Torsvik, Trond H. 2013. The Extreme Proterozoic: Geology, Geochemistry, and Climate.


    Williams, George E. and Schmidt, Phillip W. 2013. The Extreme Proterozoic: Geology, Geochemistry, and Climate.


    ×

Late Precambrian glacial climate and the Earth's obliquity

  • G. E. Williams (a1)
  • DOI: http://dx.doi.org/10.1017/S0016756800046185
  • Published online: 01 May 2009
Abstract
Summary

Late Precambrian (∼ 750±200 Ma) glaciogenic sequences exhibit substantial evidence for marked climatic inequability of seasonal and longer periodicity (10° to ∼ 106 yrs): (1) tillites are closely associated with dolomites, limestones and evaporites apparently of warm-water origin; (2) tillites occur with red beds and iron-formations whose iron probably was derived ultimately from lateritic weathering; (3) glacial dropstones occur locally within carbonates and iron-formations; (4) laminae, interpreted as varves by many workers, are common in argillites, carbonates and iron-formations; and (5) permafrost structures attributable to repeated seasonal changes of temperature are locally abundant. Such climatic, particularly seasonal inequability apparently conflicts however with the probable low (≲30°) palaeolatitudes of deposition of numerous late Precambrian glaciogenic sequences.

The contradictions presented by such sequences may be resolved by postulating a considerably increased obliquity of the ecliptic (ε) in late Precambrian time. Substantial increase in e would: (1) greatly amplify global seasonality; (2) weaken climatic zonation, thus allowing warm-water sedimentation and lateritic weathering over wide latitudes; and (3) increase the ratio of radiation received annually at either pole to that received at the equator, so when 54° < ε < 126° low and middle latitudes (≤ 43°) would be glaciated in preference to the poles. Ice sheets and permafrost thus can be envisaged principally in low and middle latitudes with contiguous warm-water and iron-rich facies under a markedly seasonal climate. The concept of secular change of e is supported by other geological evidence.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. R. Aalto 1971. Glacial marine sedimentation and stratigraphy of the Toby Conglomerate (upper Proterozoic), southeastern British Columbia, northwestern Idaho and northeastern Washington. Can. J. Earth Sci. 8, 753–87.

E. A. Alexandrov 1973. The Precambrian banded iron-formations of the Soviet Union. Econ. Geol. 68, 1035–62.

M. M. Anderson 1972. A possible time span for the late Precambrian of the Avalon Peninsula, southeastern Newfoundland, in the light of worldwide correlation of fossils, tillites, and rock units within the succession. Can. J. Earth Sci. 9, 1710–26.

R. Y. Anderson & L. H. Koopmans 1963. Harmonic analysis of varve time series. J. geophys. Res. 68, 877–93.

L. E. Andersson & J. D. Fix 1973. Pluto: new photometry and a determination of the axis of rotation. Icarus 20, 279–83.

N. J. Beukes 1973. Precambrian iron-formations of southern Africa. Econ. Geol. 68, 9601004.

D. E. T. Bidgood & W. B. Harland 1961. Palaeomagnetism in some East Greenland sedimentary rocks. Nature, Lond.189, 633–4.

B. Biju-Duval & O. Gariel 1969. Nouvelles observations sur les phénomènes Glaciaires ‘Eocambriens’ de la Bordure Nord de la Synéclise de Taoudeni, entre le Hank et le Tanezrouft, Sahara Occidental. Palaeogeogr. Palaeoclim. Palaeoecol. 6, 283315.

P. L. Binda & J. G. Van Eden 1972. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia. Palaeogeogr. Palaeoclim. Palaeoecol. 12, 151–68.

K. Bjørlykke 1974. Glacial striations on clast from the Moelv Tillite of the late Precambrian of southern Norway. Am. J. Sci. 274, 443–8.

E. Blackwelder 1932. An ancient glacial formation in Utah. J. Geol. 40, 289304.

J. C. Briden & I. G. Gass 1974. Plate movement and continental magmatism. Nature, Lond. 248, 650–3.

A. G. W. Cameron 1973. Major variations in solar activity? Rev. Geophys. Space Physics 11, 505–10.

N. Clauer 1973. Utilisation de Ia méthode rubidium-strontium pour la datation des niveaux sédimentaires du Précambrien supérieur de l'Adrar mauritanien (Sahara occidental) et la mise en évidence de transformations précoces des minéraux argileux. Geochim. cosmochim. Acta 37, 2243–55.

P. Cloud 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68, 1135–43.

W. Compston & P. A. Arriens 1968. The Precambrian geochronology of Australia. Can. J. Earth Sci. 5, 561–83.

M. D. Crittenden , F. E. Schaeffer , D. E. Trimble & L. A. Woodward 1971. Nomenclature and correlation of some upper Precambrian and basal Cambrian sequences in western Utah and southeastern Idaho. Bull. geol. Soc. Am. 82, 581602.

B. Daily , V. A. Gostin & C. A. Nelson 1973. Tectonic origin for an assumed glacial pavement of late Proterozoic age, South Australia. J. geol. Soc. Aust., 20, 75–8.

J. Van N. Dorr 1973. Iron-formation in South America. Econ. Geol. 68, 1005–22.

P. R. Dunn , B. P. Thomson & K. Rankama 1971. Late Pre-Cambrian glaciation in Australia as a stratigraphic boundary. Nature, Lond. 231, 498502.

B. J. J. Embleton & J. W. Giddings 1974. Late Precambrian and lower Palaeozoic palaeomagnetic results from South Australia and Western Australia. Earth Planet. Sci. Lett. 22, 355–65.

P. Evans 1971. Towards a Pleistocene time-scale. Spec. Publs geol. Soc. Lond. 5, 123356.

R. W. Fairbridge 1969. Early Paleozoic south pole in northwest Africa. Bull. geol. Soc. Am. 80, 113–14.

R. W. Fairbridge 1970. South pole reaches the Sahara. Science, N. Y. 168, 878–81.

H. Gabrielse 1967. Tectonic evolution of the northern Canadian Cordillera. Can. J. Earth Sci. 4, 271—98.

H. Gabrielse 1972. Younger Precambrian of the Canadian Cordillera. Am. J. Sci. 272, 521–36.

G. J. B. Germs 1974. The Nama Group in South West Africa and its relationship to the Pan-African Geosyncline. J. Geol. 82, 301–17.

A. Gray 1930. The correlation of the ore-bearing sediments of the Katanga and Rhodesian Copper Belt. Econ. Geol. 25, 783804.

W. B. Harland 1964(a). Critical evidence for a great Infra-Cambrian glaciation. Geol. Rdsch. 54, 4561.

W. B. Harland & D. E. T. Bidgood 1959. Palaeomagnetism in some Norwegian sparagmites and the late Pre-Cambrian ice age. Nature, Lond. 184, 1860–2.

W. B. Harland & M. J. S. Rudwick 1964. The great Infra-Cambrian ice age. Scient. Am. 211 (2), 2836.

W. C. Hatfield 1937. The geology of the Solwezi district, Northern Rhodesia. Q. Jl geol. Soc. Lond. 93, 127–55.

C. J. Hughes & W. D. Brückner 1971. Late Precambrian rocks of eastern Avalon Peninsula, Newfoundland – a volcanic island complex. Can. J. Earth Sci. 8, 899915.

E. Irving & J. K. Park 1972. Hairpins and superintervals. Can. J. Earth Sci. 9, 1318–24.

C. A. L. Isotta , A. C. Rocha-Campos & R. Yoshida 1969. Striated pavement of the upper Precambrian glaciation in Brazil. Nature, Lond. 222, 466–8.

G. C. A. Jackson 1932. The geology of the N'Changa district, Northern Rhodesia. Q. Jl geol. Soc. Lond. 88, 443515.

B. M. Keller 1973. Great glaciations in history of the Earth. Int. Geol. Rev. 15, 1067–74.

A. Kröner & H. Correia 1973. Further evidence for glaciogenic origin of late Precambrian mixtites in Angola. Nature Phys. Sci., Lond. 246, 115–17.

F. Leutwein 1968. Contribution à la connaissance du précambrien récent en Europe Occidentale et développement géochronologique du Briovérien en Bretagne (France). Can. J. Earth Sci. 5, 673–82.

M. W. McElhinny , J. W. Giddings & B. J. J. Embleton 1974. Palaeomagnetic results and late Precambrian glaciations. Nature, Lond. 248, 557–61.

F. K. Miller , E. H. McKee & R. G. Yates 1973. Age and correlation of the Winder-mere Group in northeastern Washington. Bull. geol. Soc. Am. 84, 3723–30.

B. C. Murray , M. J. S. Belton , G. E. Danielson , M. E. Davies , D. E. Gault , B. Hapke , B. O'Leary , R. G. Strom , V. Suomi & N. Trask 1974. Mercury's surface: preliminary description and interpretation from Mariner 10 pictures. Science, N.Y. 185, 169–79.

S. J. Peale 1974. Possible histories of the obliquity of Mercury. Astr. J., N.Y. 79, 722–44.

W. J. Perry & H. G. Roberts 1968. Late Precambrian glaciated pavements in the Kimberley region, Western Australia. J. geol. Soc. Aust. 15, 51–6.

J. D. A. Piper 1973. Latitudinal extent of late Precambrian glaciations. Nature, Lond. 244, 342–4.

D. W. Rankin , T. W. Stern , J. C. Reed & M. F. Newell 1969. Zircon ages of felsic volcanic rocks in the upper Precambrian of the Blue Ridge, Appalachian Mountains. Science, N.Y. 166, 741–4.

H. G. Reading & R. G. Walker 1966. Sedimentation of Eocambrian tillites and associated sediments in Finnmark, northern Norway. Palaeogeogr. Palaeoclim. Palaeoecol. 2, 177212.

J. D. Roberts 1971. Late Precambrian glaciation: an anti-greenhouse effect. Nature, Lond. 234, 216–7.

W. A. Robertson & W. R. A. Baragar 1972. The petrology and paleomagnetism of the Coronation Sills. Can. J. Earth Sci. 9, 123–40.

M. G. Rochester 1973. The Earth's rotation. EOS (Trans. Am. geophys. Un.) 54,769–81.

C. Sagan , O. B. Toon & P. J. Gierasch 1973. Climatic change on Mars. Science, N.Y. 181, 1045–9.

L. J. G. Schermerhorn 1974. Late Precambrian mixtites: glacial and/or nonglacial? Am. J. Sci. 274, 673824.

A. M. Spencer & M. O. Spencer 1972. The late Precambrian/Lower Cambrian Bonahaven Dolomite of Islay and its stromatolites. Scott. J. Geol. 8, 269–82.

N. Spjeldnaes 1964. The Eocambrian glaciation in Norway. Geol. Rdsch. 54, 2445.

J. Steiner & E. Grillmair 1973. Possible galactic causes of periodic and episodic glaciations. Bull. geol. Soc. Am. 84, 1003–18.

D. H. Tarling 1974. A palaeomagnetic study of Eocambrian tillites in Scotland. J. geol. Soc. Lond. 130, 163–77.

A. F. Trendall 1972. Revolution in Earth history. J. geol. Soc. Aust. 19, 287311.

A. F. Trendall 1973(a). Precambrian iron-formations of Australia. Econ. Geol. 68, 1023–34.

A. F. Trendall 1973(b). Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ. Geol. 68, 1089–97.

W. R. Ward 1973. Large-scale variations in the obliquity of Mars. Science, N.Y. 181, 260–2.

H. Woodward 1876. The President's address. Proc. Geol. Ass. 4, 134.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×