Skip to main content
×
Home

A lifetime of the Variscan orogenic plateau from uplift to collapse as recorded by the Prague Basin, Bohemian Massif

  • FRANTIŠEK VACEK (a1) (a2) and JIŘÍ ŽÁK (a2)
Abstract
Abstract

The Ordovician to Middle Devonian Prague Basin, Bohemian Massif, represents the shallowest crust of the Variscan orogen corresponding to c. 1–4 km palaeodepth. The basin was inverted and multiply deformed during the Late Devonian to early Carboniferous Variscan orogeny, and its structural inventory provides an intriguing record of complex geodynamic processes that led to growth and collapse of a Tibetan-type orogenic plateau. The northeastern part of the Prague Basin is a simple syncline cross-cut by reverse/thrust faults and represents a doubly vergent compressional fan accommodating c. 10–19 % ~NW–SE shortening, only minor syncline axis-parallel extension and significant crustal thickening. The compressional structures were locally overprinted by vertical shortening, kinematically compatible with ductile normal shear zones that exhumed deep crust in the orogen's interior at c. 346–337 Ma. On a larger scale, the deformation history of the Prague Syncline is consistent with building significant palaeoelevation during Variscan plate convergence. Based on a synthesis of finite deformation parameters observed across the upper crust in the centre of the Bohemian Massif, we argue for a differentiated within-plateau palaeotopography consisting of domains of local thickening alternating with topographic depressions over lateral extrusion zones. The plateau growth, involving such complex three-dimensional internal deformations, was terminated by its collapse driven by multiple interlinked processes including gravity, voluminous magma emplacement and thermal softening in the hinterland, and far-field plate-boundary forces resulting from the relative dextral motion of Gondwana and Laurussia.

Copyright
Corresponding author
Author for correspondence: jirizak@natur.cuni.cz
References
Hide All
Aifa T., Pruner P., Chadima M. & Štorch P. 2007. Structural evolution of the Prague synform (Czech Republic) during Silurian times: an AMS, rock magnetism, and paleomagnetic study of the Svatý Jan pod Skalou dikes. Consequences for the nappes emplacement. Geological Society of America Special Paper 423, 249–65.
Aleksandrowski P., Kryza R., Mazur S. & Zaba J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 134, 727–39.
Andronicos C. L., Velasco A. A. & Hurtado J. M. 2007. Large-scale deformation in the India–Asia collision constrained by earthquakes and topography. Terra Nova 19, 105–19.
Arthaud F. & Matte P. 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88, 1305–20.
Badham J. P. N. 1982. Strike-slip orogens: an explanation for the Hercynides. Journal of the Geological Society, London 139, 493504.
Bajolet F., Chardon D., Martinod J., Gapais D. & Kermarrec J. J. 2015. Synconvergence flow inside and at the margin of orogenic plateaus: lithospheric-scale experimental approach. Journal of Geophysical Research 120, 6634–57.
Barrande J. 1852. Système Silurien du centre de la Bohême, 1ère Partie: Recherches Paléontologiques, Vol. 1, Planches. Crustacés: Trilobites. Prague, Paris, 935 pp.
Beaumont C., Hamilton J. & Fullsack P. 1996. Mechanical model for subduction–collision tectonics of Alpine-type compressional orogens. Geology 24, 675–8.
Beaumont C., Jamieson R. A. & Nguyen M. 2010. Models of large, hot orogens containing a collage of reworked and accreted terranes. Canadian Journal of Earth Sciences 47, 485515.
Beaumont C., Jamieson R. A., Nguyen M. H. & Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–42.
Becq-Giraudon J. F., Montenat C. & Van Den Driessche J. 1996. Hercynian high-altitude phenomena in the French Massif Central: tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 227–41.
Brenchley P. J. & Štorch P. 1989. Environmental changes in the Hirnantian (upper Ordovician) of the Prague Basin, Czechoslovakia. Geological Journal 24, 165–81.
Buggisch W. & Mann U. 2004. Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe. International Journal of Earth Sciences 93, 521–41.
Cao W., Paterson S. R., Memeti V., Mundil R., Anderson J. L. & Schmidt K. 2015. Tracking paleodeformation fields in the Mesozoic central Sierra Nevada arc: implications for intra-arc cyclic deformation and arc tempos. Lithosphere 7, 296320.
Chamberlin R. T. 1910. The Appalachian folds of central Pennsylvania. Journal of Geology 18, 228–51.
Chlupáč I. 1988. Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian–Middle Devonian, Czechoslovakia). Journal of Geological Sciences, Geology 43, 83146.
Chlupáč I. 1993. Geology of the Barrandian: A Field Trip Guide. Frankfurt am Main: Waldemar Kramer, 163 pp.
Chlupáč I. 1996. Neptunian dykes in the Koněprusy Devonian: geological and palaeontological observations. Bulletin of the Czech Geological Survey 71, 193208.
Chlupáč I. 2003. Comments on facies development and stratigraphy of the Devonian, Barrandian area, Czech Republic. Bulletin of Geosciences 78, 299312.
Chlupáč I., Havlíček V., Kříž J., Kukal Z. & Štorch P. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, 183 pp.
Copley A. & Jackson J. 2006. Active tectonics of the Turkish–Iranian Plateau. Tectonics 25, TC6006. doi: 10.1029/2005TC001906.
Crick R. E., Ellwood B. B., Hladil J., El Hassani A., Hrouda F. & Chlupáč I. 2001. Magnetostratigraphy susceptibility of the Přídolian–Lochkovian (Silurian–Devonian) GSSP (Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 73100.
Cruden A. R., Nasseri M. H. B. & Pysklywec R. 2006. Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models. In Analogue and Numerical Modelling of Crustal-Scale Processes (eds Buiter S. J. H. & Schreurs G.), pp. 79104. Geological Society of London, Special Publication no. 253.
Culshaw N. G., Beaumont C. & Jamieson R. A. 2006. The orogenic superstructure–infrastructure concept: revisited, quantified, and revived. Geology 34, 733–6.
Dahlstrom C. D. A. 1969. Balanced cross sections. Canadian Journal of Earth Sciences 6, 743–57.
Dallmeyer R. D. & Urban M. 1994. Variscan vs. Cadomian tectonothermal evolution within the Teplá–Barrandian zone, Bohemian Massif, Czech Republic: evidence from 40Ar/39Ar mineral and whole-rock slate/phyllite ages. Journal of the Czech Geological Society 39, 21–2.
Dallmeyer R. D. & Urban M. 1998. Variscan vs Cadomian tectonothermal activity in northwestern sectors of the Teplá–Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geologische Rundschau 87, 94106.
Da Silva A. C., Hladil J., Chadimová L., Slavík L., Hilgen F. J., Bábek O. & Dekkers M. J. 2016. Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian–Pragian sediments (Prague Synform, Czech Republic). Earth and Planetary Science Letters 455, 125–39.
DeCelles P. G., Robinson D. M. & Zandt G. 2002. Implications of shortening in the Himalayan fold–thrust belt for uplift of the Tibetan Plateau. Tectonics 21, 1062. doi: 10.1029/2001TC001322.
de Sitter L. U. & Zwart H. J. 1960. Tectonic development in supra and infra-structures of a mountain chain. In Proceedings of the 21st International Geological Congress, Copenhagen, pp. 248–56.
Dörr W. & Zulauf G. 2010. Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. International Journal of Earth Sciences 99, 299325.
Dörr W. & Zulauf G. 2012. Reply to W. Franke on W. Dörr and G. Zulauf elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. International Journal of Earth Sciences 101, 2035–41.
Dörr W., Zulauf G., Fiala J., Franke W. & Vejnar Z. 2002. Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit: a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352, 6585.
Drost K., Gerdes A., Jeffries T., Linnemann U. & Storey C. 2011. Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Research 19, 213–31.
Drost K., Linnemann U., McNaughton N., Fatka O., Kraft P., Gehmlich M., Tonk C. & Marek J. 2004. New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). International Journal of Earth Sciences 93, 742–57.
Fatka O., Kraft J., Kraft P., Mergl M., Mikuláš R. & Štorch P. 1995. Ordovician of the Prague Basin: stratigraphy and development. In Ordovician Odyssey: Short Papers for the 7th International Symposium on the Ordovician System (eds Cooper J. D., Droser M. L. & Finney S. C.), pp. 241–4. Las Vegas: The Pacific Section Society for Sedimentary Geology.
Fatka O. & Mergl M. 2009. The ‘microcontinent’ Perunica: status and story 15 years after conception. In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography (ed. Bassett M. G.), pp. 65101. Geological Society of London, Special Publication no. 325.
Ferrová L., Frýda J. & Lukeš P. 2012. High-resolution tentaculite biostratigraphy and facies development across the Early Devonian Daleje Event in the Barrandian (Bohemia): implications for global Emsian stratigraphy. Bulletin of Geosciences 87, 587624.
Filip J. & Suchý V. 2004. Thermal and tectonic history of the Barrandian Lower Paleozoic, Czech Republic: is there a fission-track evidence for Carboniferous–Permian overburden and pre-Westphalian alpinotype thrusting? Bulletin of Geosciences 79, 107–12.
Franěk J., Schulmann K., Lexa O., Tomek Č. & Edel J. B. 2011. Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. Journal of Metamorphic Geology 29, 5378.
Franke W. 2006. The Variscan orogen in Central Europe: construction and collapse. In European Lithosphere Dynamics (eds Gee D. G. & Stephenson R. A.), pp. 333–43. Geological Society of London, Memoir no. 32.
Franke W. 2012. Comment on Dörr and Zulauf: elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci (Geol Rundsch) (2010) 99: 299–325. International Journal of Earth Sciences 101, 2027–34.
Franke W. 2014. Topography of the Variscan orogen in Europe: failed–not collapsed. International Journal of Earth Sciences 103, 1471–99.
Frýda J. & Frýdová B. 2014. First evidence for the Homerian (late Wenlock, Silurian) positive carbon isotope excursion from peri-Gondwana: new data from the Barrandian (Perunica). Bulletin of Geosciences 89, 617–34.
Frýda J., Hladil J. & Vokurka K. 2002. Seawater strontium isotope curve at the Silurian/Devonian boundary: a study of the global Silurian/Devonian boundary stratotype. Geobios 35, 21–8.
Glasmacher U. A., Mann U. & Wagner G. A. 2002. Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-track analysis. Tectonophysics 359, 381402.
Glodny J., Grauert B., Fiala J., Vejnar Z. & Krohe A. 1998. Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geologische Rundschau 87, 124–34.
Graveleau F., Malavieille J. & Dominguez S. 2012. Experimental modelling of orogenic wedges: a review. Tectonophysics 538540, 166.
Groshong R. H., Bond C., Gibbs A., Ratliff R. & Wiltschko D. V. 2012. Preface: Structural balancing at the start of the 21st century: 100 years since Chamberlin. Journal of Structural Geology 41, 15.
Hajná J., Žák J. & Kachlík V. 2011. Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Research 19, 495508.
Hajná J., Žák J. & Dörr W. 2017. Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Research 42, 6383.
Hajná J., Žák J., Kachlík V. & Chadima M. 2010. Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá–Barrandian unit, Bohemian Massif. Precambrian Research 176, 2745.
Hajná J., Žák J., Kachlík V. & Chadima M. 2012. Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian unit, Bohemian Massif. International Journal of Earth Sciences 101, 1855–73.
Halavínová M., Melichar R. & Slobodník M. 2008. Hydrothermal veins linked with the Variscan structure of the Prague Synform (Barrandien, Czech Republic): resolving fluid–wall rock interaction. Geological Quarterly 52, 309–20.
Havlíček V. 1963. Tectogenetic disruption of the Barrandian Paleozoic. Journal of Geological Sciences, Geology 1, 77102.
Havlíček V. 1980. Development of Paleozoic basins in the Bohemian Massif (Cambrian–Lower Carboniferous). Journal of Geological Sciences, Geology 34, 3165.
Havlíček V. 1981. Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area – central Bohemia). Journal of Geological Sciences, Geology 35, 748.
Havlíček V. 1982. Ordovician of Bohemia: development of the Prague Basin and its benthic communities. Journal of Geological Sciences, Geology 37, 103–36.
Henk A. 1999. Did the Variscides collapse or were they torn apart?: A quantitative evaluation of the driving forces for postconvergent extension in central Europe. Tectonics 18, 774–92.
Hladíková J., Hladil J. & Kříbek B. 1997. Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology 132, 225–41.
Hladil J., Slavík L., Vondra M., Koptíková L., Čejchan P., Schnabl P., Adamovič J., Vacek F., Vích R., Lisá L. & Lisý P. 2011. Pragian–Emsian successions in Uzbekistan and Bohemia: magnetic susceptibility logs and their dynamic time warping alignment. Stratigraphy 8, 217–35.
Hofmann M., Linnemann U., Gerdes A., Ullrich B. & Schauer M. 2009. Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U–Pb zircon data. In Ancient Orogens and Modern Analogues (eds Murphy J. B., Keppie J. D. & Hynes A. J.), pp. 197214. Geological Society of London, Special Publication no. 327.
Hollister L. S. & Crawford M. L. 1986. Melt-enhanced deformation: a major tectonic process. Geology 14, 558–61.
Holub F. V., Cocherie A. & Rossi P. 1997. Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex: constraints on the chronology of thermal and tectonic events along the Barrandian–Moldanubian boundary. Comptes Rendus de L'Academie des Sciences, Series IIA, Earth and Planetary Science 325, 1926.
Horný R. 1965. Tectonic structure and development of the Silurian between Beroun and Tachlovice. Journal for Mineralogy and Geology 10, 147–55.
Jamieson R. A. & Beaumont C. 2013. On the origin of orogens. Geological Society of America Bulletin 125, 1671–702.
Janoušek V., Braithwaite C. J. R., Bowes D. R. & Gerdes A. 2004. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78, 6799.
Janoušek V. & Gerdes A. 2003. Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U–Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. Journal of the Czech Geological Society 48, 70–1.
Janoušek V., Wiegand B. A. & Žák J. 2010. Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. Journal of the Geological Society, London 167, 347–60.
Johnson M. R. W. 2002. Shortening budgets and the role of continental subduction during the India–Asia collision. Earth-Science Reviews 59, 101–23.
Knížek M., Melichar R. & Janečka J. 2010. Stratigraphic separation diagrams as a tool for determining fault geometry in a folded and thrusted region: an example from the Barrandian region, Czech Republic. Geological Journal 45, 536–43.
Konopásek J. & Schulmann K. 2005. Contrasting Early Carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). Journal of the Geological Society, London 162, 463–70.
Koptíková L., Bábek O., Hladil J., Kalvoda J. & Slavík L. 2010. Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sedimentary Geology 225, 8398.
Košler J., Aftalion M. & Bowers D. R. 1993. Mid–late Devonian plutonic activity in the Bohemian Massif: U–Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. Neues Jahrbuch für Mineralogie, Monatshefte 9, 417–31.
Košler J., Bowes D. R., Farrow C. M., Hopgood A. M., Rieder M. & Rogers G. 1997. Constraints on the timing of events in the multi-episodic history of the Teplá–Barrandian complex, western Bohemia, from integration of deformational sequence and Rb–Sr isotopic data. Neues Jahrbuch für Mineralogie, Monatshefte 5, 203–20.
Kroner U. & Romer R. L. 2013. Two plates – many subduction zones: the Variscan orogeny reconsidered. Gondwana Research 24, 298329.
Kříž J. 1991. The Silurian of the Prague Basin (Bohemia) – tectonic, eustatic and volcanic controls on facies and faunal development. Special Papers in Palaeontology 44, 179203.
Kříž J. 1992. Silurian field excursions: Prague Basin (Barrandian), Bohemia. National Museum of Wales, Geological Notes 13, 1111.
Krs M., Krsová M., Pruner P., Chvojka R. & Havlíček V. 1987. Palaeomagnetism, palaeogeography and the multicomponent analysis of Middle and Upper Cambrian rocks of the Barrandian in the Bohemian Massif. Tectonophysics 139, 120.
Krs M., Pruner P. & Man O. 2001. Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terrane. Tectonophysics 332, 93114.
Kubínová Š., Faryad S. W., Verner K., Schmitz M. D. & Holub F. V. 2017. Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan orogeny in the Bohemian Massif. Lithos 272–273, 205–21.
Kukal Z. & Jäger O. 1988. Siliciclastic signal of the Variscan orogenesis: the Devonian Srbsko Formation of Central Bohemia. Bulletin of the Central Geological Survey 63, 6581.
Lease R. O., Burbank D. W., Zhang H., Liu J. & Yuan D. 2012. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: is lower crustal flow necessary? Tectonics 31, TC3011. doi: 10.1029/2011TC003066.
Lehnert O., Frýda J., Buggisch W., Munnecke A., Nützel A., Kříž J. & Manda Š. 2007. δ13C records across the late Silurian Lau event: new data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology 245, 227–44.
Lewandowski M. 2003. Assembly of Pangea: combined paleomagnetic and paleoclimatic approach. Advances in Geophysics 46, 199235.
Li Y., Wang C., Dai J., Xu G., Hou Y. & Li X. 2015. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: a review. Earth-Science Reviews 143, 3661.
Lister G. & Foster M. 2009. Tectonic mode switches and the nature of orogenesis. Lithos 113, 274–91.
Maierová P., Schulmann K., Lexa O., Guillot S., Štípská Š., Janoušek V. & Čadek O. 2016. European Variscan orogenic evolution as an analogue of Tibetan–Himalayan orogen: insights from petrology and numerical modeling. Tectonics 35, 1760–80.
Manda Š., Štorch P., Slavík L., Frýda J., Kříž J. & Tasáryová Z. 2012. The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of Bohemia. Geological Magazine 149, 507–31.
Martínez Catalán J. R. 2011. Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23, 241–7.
Martínez Catalán J. R. 2012. The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. International Journal of Earth Sciences 101, 1299–314.
Matte P. 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126, 329–74.
Matte P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13, 122–8.
Mazur S. & Aleksandrowski P. 2001. The Teplá (?)/ Saxothuringian suture in the Karkonosze–Izera massif, western Sudetes, central European Variscides. International Journal of Earth Sciences 90, 341–60.
Mazur S., Aleksandrowski P., Kryza R. & Oberc-Dziedzic T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.
Melichar R. 2004. Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30, 167–87.
Mikuláš R. 1998. Ordovician of the Barrandian area: reconstruction of the sedimentary basin, its benthic communities and ichnoassemblages. Journal of the Czech Geological Society 43, 143–59.
Mouthereau F., Lacombe O. & Vergés J. 2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535, 2760.
Murphy D. C. 1987. Suprastructure/infrastructure transition, east central Cariboo Mountains, British Columbia: geometry, kinematics and tectonic implications. Journal of Structural Geology 9, 1329.
Paris F. & Robardet M. 1990. Early Palaeozoic palaeobiogeography of the Variscan regions. Tectonophysics 177, 193213.
Patočka F., Pruner P. & Štorch P. 2003. Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif): palaeotectonic implications. Physics and Chemistry of the Earth 28, 735–49.
Patočka F. & Štorch P. 2004. Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif, Czech Republic). International Journal of Earth Sciences 93, 728–41.
Pavlis T. L. 1996. Fabric development in syn-tectonic intrusive sheets as a consequence of melt-dominated flow and thermal softening of the crust. Tectonophysics 253, 131.
Pertoldová J., Verner K., Vrána S., Buriánek D., Štědrá V. & Vondrovic L. 2010. Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. Journal of Geosciences 55, 299319.
Rajlich P., Schulmann K. & Synek J. 1988. Strain analysis of conglomerates in the Central Bohemian shear zone. Krystalinikum 19, 119–34.
Ramsay J. G. 2003. Folding and Fracturing of Rocks. Caldwell, NJ: Blackburn Press, 568 pp.
Ramsay J. G. 1974. Development of chevron folds. Geological Society of America Bulletin 85, 1741–54.
Riller U. & Oncken O. 2003. Growth of the central Andean plateau by tectonic segmentation is controlled by the gradient in crustal shortening. Journal of Geology 111, 367–84.
Robardet M. 2003. The Armorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 125–48.
Röhlich P. 2007. Structure of the Prague basin: the deformation diversity and its causes (Czech Republic). Bulletin of Geosciences 82, 175–82.
Royden L. H., Burchfiel B. C., King R. W., Wang E., Chen Z., Shen F. & Liu Y. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788–90.
Royden L. H., Burchfiel B. C. & van der Hilst R. D. 2008. The geological evolution of the Tibetan Plateau. Science 321, 1054–8.
Schulmann K., Konopásek J., Janoušek V., Lexa O., Lardeaux J. M., Edel J. B., Štípská P. & Ulrich S. 2009. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geoscience 341, 266–86.
Schulmann K., Lexa O., Janoušek V., Lardeaux J. M. & Edel J. B. 2014. Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42, 275–8.
Searle M. P., Elliott J. R., Phillips R. J. & Chung S. L. 2011. Crustal–lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, London 168, 633–72.
Servais T. & Sintubin M. 2009. Avalonia, Armorica, Perunica: terranes, microcontinents, microplates or palaeobiogeographical provinces? In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography (ed. Bassett M. G.), pp. 103–15. Geological Society of London, Special Publication no. 325.
Sláma J., Dunkley D. J., Kachlík V. & Kusiak M. A. 2008. Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461, 4459.
Slavík L. 2004. The Pragian–Emsian conodont successions of the Barrandian area: search of an alternative to the GSSP polygnathid-based correlation concept. Geobios 37, 454–70.
Slavík L., Carls P., Hladil J. & Koptíková L. 2012. Subdivision of the Lochkovian Stage based on conodont faunas from the stratotype area (Prague Synform, Czech Republic). Geological Journal 47, 616–31.
Slobodník M., Melichar R., Hurai V. & Bakker R. J. 2012. Litho-stratigraphic effect on Variscan fluid flow within the Prague synform, Barrandian: evidence based on C, O, Sr isotopes and fluid inclusions. Marine and Petroleum Geology 35, 128–38.
Stampfli G. M., Hochard C., Vérard C., Wilhem C. & von Raumer J. F. 2013. The formation of Pangea. Tectonophysics 593, 119.
Štorch P. 1986. Ordovician–Silurian boundary in the Prague Basin (Barrandian area, Bohemia). Journal of Geological Sciences, Geology 41, 69103.
Štorch P. 1990. Upper Ordovician–lower Silurian sequences of the Bohemian Massif, central Europe. Geological Magazine 127, 225–39.
Štorch P. 2006. Facies development, depositional settings and sequence stratigraphy across the Ordovician–Silurian boundary: a new perspective from the Barrandian area of the Czech Republic. Geological Journal 41, 163–92.
Štorch P., Fatka O. & Kraft P. 1993. Lower Palaeozoic of the Barrandian area (Czech Republic) – a review. Coloquios de Paleontología 45, 163–91.
Štorch P. & Frýda J. 2012. The late Aeronian graptolite sedgwickii Event, associated positive carbon isotope excursion and facies changes in the Prague Synform (Barrandian area, Bohemia). Geological Magazine 149, 1089–106.
Štorch P., Manda Š., Slavík L. & Tasáryová Z. 2016. Wenlock–Ludlow boundary interval revisited: new insights from the offshore facies of the Prague Synform, Czech Republic. Canadian Journal of Earth Sciences 53, 666–73.
Strnad L. & Mihaljevič M. 2005. Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Mineralogy and Petrology 84, 4768.
Styron R. H., Taylor M. H. & Murphy M. A. 2011. Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya. Geological Society of America Bulletin 7, 582–96.
Suchý V., Dobeš P., Filip J., Stejskal M. & Zeman A. 2002 a. Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348, 2550.
Suchý V., Dobeš P., Sýkorová I., Machovič V., Stejskal M., Kroufek J., Chudoba J., Matějovská L., Havelcová M. & Matysová P. 2010. Oil-bearing inclusions in vein quartz and calcite and, bitumens in veins: testament to multiple phases of hydrocarbon migration in the Barrandian basin (lower Palaeozoic), Czech Republic. Marine and Petroleum Geology 27, 285–97.
Suchý V., Rozkošný I., Žák K. & Franců J. 1996. Epigenetic dolomitization of the Přídolí formation (Upper Silurian), the Barrandian basin, Czech Republic: implications for burial history of Lower Paleozoic strata. International Journal of Earth Sciences 85, 264–77.
Suchý V., Sandler A., Slobodník M., Sýkorová I., Filip J., Melka K. & Zeman A. 2015. Diagenesis to very low-grade metamorphism in lower Palaeozoic sediments: a case study from deep borehole Tobolka 1, the Barrandian Basin, Czech Republic. International Journal of Coal Geology 140, 4162.
Suchý V., Sýkorová I., Dobeš P., Machovič V., Filip J., Zeman A. & Stejskal M. 2012. Blackened bioclasts and bituminous impregnations in the Koněprusy Limestone (Lower Devonian), the Barrandian area, Czech Republic: implications for basin analysis. Facies 58, 759–77.
Suchý V., Sýkorová I., Melka K., Filip J. & Machovič V. 2007. Illite ‘crystallinity’, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Teplá–Barrandian unit, Czech Republic. Clay Minerals 42, 503–26.
Suchý V., Sýkorová I., Stejskal M., Šafanda J., Machovič V. & Novotná M. 2002 b. Dispersed organic matter from Silurian shales of the Barrandian Basin, Czech Republic: optical properties, chemical composition and thermal maturity. International Journal of Coal Geology 53, 125.
Tait J., Bachtadse V. & Soffel H. 1994. New palaeomagnetic constraints on the position of central Bohemia during early Ordovician times. Geophysical Journal International 116, 131–40.
Tait J., Bachtadse V. & Soffel H. 1995. Upper Ordovician paleogeography of the Bohemian Massif: implications for Armorica. Geophysical Journal International 122, 2112018.
Tasáryová Z., Schnabl P., Čížková K., Pruner P., Janoušek V., Rapprich V., Štorch P., Manda Š., Frýda J. & Trubač J. 2014. Gorstian palaeoposition and geotectonic setting of Suchomasty Volcanic Centre (Silurian, Prague Basin, Teplá–Barrandian Unit, Bohemian Massif). GFF 136, 262–5.
Timmermann H., Dörr W., Krenn E., Finger F. & Zulauf G. 2006. Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. International Journal of Earth Sciences 95, 629–47.
Tomek F., Žák J. & Chadima M. 2015. Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: the Staré Sedlo complex, Bohemian Massif. Journal of Geodynamics 87, 5066.
Vacek F. 2011. Palaeoclimatic event at the Lochkovian–Pragian boundary recorded in magnetic susceptibility and gamma-ray spectrometry (Prague Synclinorium, Czech Republic). Bulletin of Geosciences 86, 259–68.
Vanderhaeghe O. 2012. The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: a reappraisal of the orogenic cycle. Journal of Geodynamics 56–57, 124–45.
Venera Z., Schulmann K. & Kroner A. 2000. Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif): structure and rheological modelling. Journal of Structural Geology 22, 1437–54.
Verner K., Buriánek D., Vrána S., Vondrovic L., Pertoldová J., Hanžl P. & Nahodilová R. 2009. Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone (Bohemian Massif). Journal of Geosciences 54, 87100.
Vodrážková S., Frýda J., Suttner T. J., Koptíková L. & Tonarová P. 2013. Environmental changes close to the Lower–Middle Devonian boundary; the Basal Choteč Event in the Prague Basin (Czech Republic). Facies 59, 425–49.
Volk H., Horsfield B., Mann U. & Suchý V. 2002. Variability of petroleum inclusions in vein, fossil and vug cements: a geochemical study in the Barrandian Basin (Lower Palaeozoic, Czech Republic). Organic Geochemistry 33, 1319–41.
Weinerová H., Hron K., Bábek O., Šimíček D. & Hladil J. 2017. Quantitative allochem compositional analysis of Lochkovian–Pragian boundary sections in the Prague Basin (Czech Republic). Sedimentary Geology 354, 4359.
Winchester J. A. 2002. Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360, 521.
Yin A. & Harrison T. M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.
Žák J., Dragoun F., Verner K., Chlupáčová M., Holub F. V. & Kachlík V. 2009. Forearc deformation and strain partitioning during growth of a continental magmatic arc: the northwestern margin of the Central Bohemian Plutonic Complex, Bohemian Massif. Tectonophysics 469, 93111.
Žák J., Holub F. V. & Verner K. 2005. Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). International Journal of Earth Sciences 94, 385400.
Žák J., Kraft P. & Hajná J. 2013. Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. International Journal of Earth Sciences 102, 415–33.
Žák J., Kratinová Z., Trubač J., Janoušek V., Sláma J. & Mrlina J. 2011. Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif. International Journal of Earth Sciences 100, 1477–95.
Žák J. & Sláma J. 2017. How far did the Cadomian ʽterranesʼ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. International Geology Review, published online 5 June 2017. doi: 10.1080/00206814.2017.1334599.
Žák J., Sláma J. & Burjak M. 2017. Rapid extensional unroofing of a granite–migmatite dome with relics of high-pressure rocks, the Podolsko complex, Bohemian Massif. Geological Magazine 154, 354–80.
Žák J., Verner K., Holub F. V., Kabele P., Chlupáčová M. & Halodová P. 2012. Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. Journal of Structural Geology 36, 2742.
Zulauf G. 1994. Ductile normal faulting along the West Bohemian Shear Zone (Moldanubian/Teplá–Barrandian boundary): evidence for late Variscan extensional collapse in the Variscan Internides. Geologische Rundschau 83, 276–92.
Zulauf G. 1997. From very low-grade to eclogite-facies metamorphism: tilted crustal sections as a consequence of Cadomian and Variscan orogeny in the Teplá–Barrandian unit (Bohemian Massif). Geotektonische Forschungen 89, 1302.
Zulauf G. 2001. Structural style, deformational mechanisms and paleodifferential stress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Bohemian Massif). Tectonophysics 332, 211–37.
Zulauf G., Bues C., Dörr W. & Vejnar Z. 2002. 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). International Journal of Earth Sciences 91, 850–64.
Zuza A. V., Cheng X. & Yin A. 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt. Geosphere 12, 501–32.
Zwart H. J. 1967. The duality of orogenic belts. Geologie en Mijnbouw 46, 283309.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 73 *
Loading metrics...

* Views captured on Cambridge Core between 10th November 2017 - 24th November 2017. This data will be updated every 24 hours.