Skip to main content Accessibility help

Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea

  • STEPHEN E. GRASBY (a1) (a2), BENOIT BEAUCHAMP (a2), DAVID P.G. BOND (a3), PAUL B. WIGNALL (a4) and HAMED SANEI (a1) (a2)...

Strata of Permian – Early Triassic age that include a record of three major extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) were examined at the Festningen section, Spitsbergen. Over the c. 12 Ma record examined, mercury in the sediments shows relatively constant background values of 0.005–0.010 μg g–1. However, there are notable spikes in Hg concentration over an order of magnitude above background associated with the three extinctions. The Hg/total organic carbon (TOC) ratio shows similar large spikes, indicating that they represent a true increase in Hg loading to the environment. We argue that these represent Hg loading events associated with enhanced Hg emissions from large igneous province (LIP) events that are synchronous with the extinctions. The Hg anomalies are consistent across the NW margin of Pangea, indicating that widespread mercury loading occurred. While this provides utility as a chemostratigraphic marker the Hg spikes may also indicate loading of toxic metals to the environment, a contributing cause to the mass extinction events.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea
      Available formats
Corresponding author
Author for correspondence:
Hide All
AMAP. 2011. AMAP Assessment 2011: Mercury in the Arctic. Oslo, Norway: Arctic Monitoring and Assessment Programme(AMAP).
Andren, A. W. & Harriss, R. C. 1975. Observations on the association between mercury and organic matter dissolved in natural waters. Geochimica et Cosmochimica Acta 39 (9), 1253–58.
Beauchamp, B., Henderson, C. M. B., Grasby, S. E., Gates, L., Beatty, T., Utting, J. & James, N. P. 2009. Late Permian sedimentation in the Sverdrup Basin, Canadian Arctic: the Lindström and Black Stripe formations. Canadian Society of Petroleum Geology Bulletin 57, 167–91.
Benoit, J. M., Mason, R. P., Gilmour, C. C. & Aiken, G. R. 2001. Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochimica et Cosmochimica Acta 65 (24), 4445–51.
Blomeier, D., Dustira, A. M., Forke, H. & Scheibner, C. 2013. Facies analysis and depositional environments of a storm-dominated, temperate to cold, mixed siliceous-carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard. Norwegian Journal of Geology 93, 7598.
Bond, D. P. G. & Wignall, P. B. 2014. Large igneous provinces and mass extinctions: An update. In Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A. C.). Geological Society of America, Special Papers 505, doi:10.1130/2014.2505(02).
Bond, D. P. G., Wignall, P. B., Joachimski, M., Sun, Y., Savov, I., Grasby, S. E., Beauchamp, B. & Blomeier, D. P. G. 2015. An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen). Geological Society of America Bulletin, published online 14 April 2015, doi: 10.1130/B31216.1.
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S. & Galfetti, T. 2006. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 239 (3–4), 374–95.
Cranston, R. E. & Buckley, D. E. 1972. Mercury pathways in a river and estuary. Environmental Science & Technology 6 (3), 274–78.
Embry, A. 1989. Correlation of Upper Palaeozoic and Mesozoic sequences between Svalbard, Canadian Arctic Archipelago, and northern Alaska. In Correlation in Hydrocarbon Exploration (ed. Collinson, J. D.), pp. 8998. Netherlands: Springer.
Embry, A. F. 1992. Crockerland: The Northwest source area for the Sverdrup Basin, Canadian Arctic Islands. In Arctic Geology and Petroleum Potential (eds Vorren, T. O., Bergsager, E., Dahl-Stamnes, Ø. A., Holter, E., Johansen, B., Lie, E. & Lund, T. B.), pp. 205–16. Amsterdam: Elsevier.
Erwin, D. H. 2006. Extinction. How Life on Earth Nearly Ended 250 million years ago. New Jersey: Princeton University Press.
Gagnon, C., Pelletier, É. & Mucci, A. 1997. Behaviour of anthropogenic mercury in coastal marine sediments. Marine Chemistry 59 (1–2), 159–76.
Gehrke, G. E., Blum, J. D. & Meyers, P. A. 2009. The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochimica et Cosmochimica Acta 73 (6), 1651–65.
Golonka, J. & Ford, D. 2000. Pangean (Late Carboniferous–Middle Jurassic) paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 134.
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P. B., Talavera, C., Galloway, J. M., Piepjohn, K., Reinhardt, L. & Blomeier, D. 2015. Progressive environmental deterioration in NW Pangea leading to the Latest Permian Extinction. Geological Society of America Bulletin, published online 14 April 2015, doi: 10.1130/B31197.1.
Grasby, S. E., Beauchamp, B., Embry, A. F. & Sanei, H. 2013 a. Recurrent Early Triassic ocean anoxia. Geology 41, 175–78.
Grasby, S. E., Sanei, H., Beauchamp, B. & Chen, Z. 2013 b. Mercury deposition through the Permo–Triassic Biotic Crisis. Chemical Geology 351, 209–16.
Hall, G. & Pelchat, P. 1997. Evaluation of a direct solid sampling atomic absorption spectrometer for the trace determination of mercury in geological samples. Analyst 122 (9), 921–24.
Han, S., Gill, G. A., Lehman, R. D. & Choe, K.-Y. 2006. Complexation of mercury by dissolved organic matter in surface waters of Galveston Bay, Texas. Marine Chemistry 98 (2–4), 156–66.
Hayes, J. M., Kaplan, I. R. & Wedeking, K. W. 1983. Precambrian organic geochemistry, preservation of the record. In Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.), pp. 92132. Princeton NJ: Princeton University Press.
Horacek, M., Brandner, R. & Abart, R. 2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology 252 (1–2), 347–54.
Horacek, M., Koike, T. & Richoz, S. 2009. Lower Triassic δ13C isotope curve from shallow-marine carbonates in Japan, Panthalassa realm: Confirmation of the Tethys δ13C curve. Journal of Asian Earth Sciences 36 (6), 481–90.
Keller, G. & Kerr, A. C. (eds) 2014. Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Boulder, CO: Geological Society of America.
Lafargue, E., Espitalité, J., Marquis, F. & Pillot, D. 1998. Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Revue de L'institut Francais du Petrole 53 (4), 421–37.
Lindberg, S. E., Andrenson, A. W. & Harrisson, R. C. 1975. Geochemistry of mercury in the estuarine environment. In Estuarine Research. Chemistry, Biology and the Estuarine System (ed. Cronin, E. L.). New York: Academic Press.
Mason, R. P., Reinfelder, J. R. & Morel, F. M. M. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology 30 (6), 1835–45.
Mørk, A., Knarud, R. & Worsley, D. 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In Arctic Geology and Geophysics: Proceedings of the Third International Symposium on Arctic Geology (eds Embry, A. F. & Balkwill, H. R.), pp. 371–98. Calgary: Canadian Society of Petroleum Geologists.
Orchard, M. J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology 252 (1–2), 93117.
Outridge, P. M., Sanei, H., Stern, G. A., Hamilton, P. B. & Goodarzi, F. 2007. Evidence for control of mercury accumulation in sediments by variations of aquatic primary productivity in Canadian High Arctic lakes. Environmental Science & Technology 41, 5259–65.
Paton, M. T., Ivanov, A. V., Fiorentini, M. L., McNaughton, N. J., Mudrovska, I., Reznitskii, L. Z. & Demonterova, E. I. 2010. Late Permian and Early Triassic magmatic pulses in the Angara-Taseeva syncline, Southern Siberian Traps and their possible influence on the environment. Russian Geology and Geophysics 51 (9), 1012–20.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the End-Permian extinction. Science 305, 506–9.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G. & Telmer, K. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics Discussions 10, 4719–52.
Pyle, D. M. & Mather, T. A. 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment 37 (36), 5115–24.
Sanei, H., Grasby, S. E. & Beauchamp, B. 2012. Latest Permian mercury anomalies. Geology 40 (1), 63–6.
Sanei, H., Grasby, S. E. & Beauchamp, B. 2015. Contaminants in marine sedimentary deposits from coal fly ash during the Latest Permian Extinction (Chapter 5). In: Environmental Contaminants: Using Natural Archives to Track Sources and Long-Term Trends of Pollution (Blais, J. M., Rosen, M. R. & Smol, J. P., eds), pp. 89100. Springer, Developments in Paleoenvironmental Research vol. 18.
Sanei, H., Outridge, P. M., Stern, G. A. & Macdonald, R. W. 2014.Classification of mercury-labile organic matter relationships in lake sediments. Chemical Geology 373, 8792.
Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., Susong, D. D., Green, J. R. & Abbott, M. L. 2002. Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science & Technology 36 (11), 2303–10.
Scotese, C. R. 2004. A continental drift flipbook. Journal of Geology 112, 729–41.
Sial, A. N., Chen, J., Lacerda, L. D., Peralta, S., Gaucher, C., Frei, R., Cirilli, S., Ferreira, V. P., Marquillas, R. A., Barbosa, J. A., Pereira, N. S. & Belmino, I. K. C. 2014. High-resolution Hg chemostratigraphy: a contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous–Paleogene Boundary impact event. Palaeogeography, Palaeoclimatology, Palaeoecology 414, 98115.
Sial, A. N., Lacerda, L. D., Ferreira, V. P., Frei, R., Marquillas, R. A., Barbosa, J. A., Gaucher, C., Windmöller, C. C. & Pereira, N. S. 2013. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition. Palaeogeography, Palaeoclimatology, Palaeoecology 387, 153–64.
Silva, M. V. N., Sial, A. N., Barbosa, J. A., Ferreira, V. P., Neumann, V. H. & De Lacerda, L. D. 2013. Carbon isotopes, rare-earth elements and mercury geochemistry across the K–T transition of the Paraíba Basin, northeastern Brazil. In Isotopic Studies in Cretaceous Research (Bojar, A.-V., Melinte-Dobrinescu, M. C. & Smit, J., eds), pp. 85104. Geological Society, London, Special Publications no. 382.
Slemr, F., Junkermann, W., Schmidt, R. W. H. & Sladkovic, R. 1995. Indication of change in global and regional trends of atmospheric mercury concentrations. Geophysical Research Letters 22 (16), 2143–6.
Slemr, F. & Scheel, H. E. 1998. Trends in atmospheric mercury concentrations at the summit of the Wank mountain, Southern Germany. Atmospheric Environment 32 (5), 845–53.
Stemmerik, L. & Worsley, D. 2005. 30 years on: Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norsk Geologisk Tidsskrift 85, 151–68.
Stern, G. A., Sanei, H., Roach, P., Delaronde, J. & Outridge, P. M. 2009. Historical interrelated variations of mercury and aquatic organic matter in lake sediment cores from a subarctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging hypothesis. Environmental Science & Technology 43, 7684–90.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L. & Lai, X. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338 (6105), 366–70.
Turner, A., Millward, G. E. & Le Roux, S. M. 2004. Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry 88 (3–4), 179–92.
Wignall, P. B., Bond, D. P. G., Sun, Y., Grasby, S. E., Beauchamp, B., Joachimski, M. & Blomeier, D. This volume. Ultra-shallow marine anoxia in an Early Triassic storm-dominated clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geological Magazine.
Wignall, P. B., Morante, R. & Newton, R. 1998. The Permo–Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine 135, 4762.
Xie, S., Pancost, R. D., Wang, Y., Yang, H., Wignall, P. B., Luo, G., Jia, C. & Chen, L. 2010. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo–Triassic biotic crisis. Geology 38 (5), 447–50.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed