Skip to main content
    • Aa
    • Aa

Mid-Cretaceous ductile deformation on the Eastern Palmer Land Shear Zone, Antarctica, and implications for timing of Mesozoic terrane collision

  • ALAN P. M. VAUGHAN (a1), SIMON P. KELLEY (a2) and BRYAN C. STOREY (a3)

Ar–Ar dating of high-strain ductile mylonites of the Eastern Palmer Land Shear Zone in the southern Antarctic Peninsula indicates that reverse movement on the shear zone occurred in late Early Cretaceous times (Albian), and not latest Jurassic times as previously supposed. The Eastern Palmer Land Shear Zone forms a major tectonic boundary, separating suspect arc terranes from rocks of Gondwana continental affinity. The dated mylonites are developed in Lower Jurassic plutonic rocks at Mount Sullivan, eastern Palmer Land, and form part of a zone of ductile reverse deformation up to 25 km wide. Biotite from a fine-grained mafic mylonite yields an Ar–Ar cooling age of 102.8±3.3 Ma. Movement of this age on the Eastern Palmer Land Shear Zone is coeval with circum-Pacific deformation, possibly related to a mantle superplume event, and provides support for allochthonous-terrane models for the Antarctic Peninsula with accretion in post-Early Cretaceous times.

Corresponding author
Author for correspondence:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 65 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.