Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-04T19:46:42.468Z Has data issue: false hasContentIssue false

Molecular organic geochemistry of a proposed stratotype for the Oxfordian/Kimmeridgian boundary (Isle of Skye, Scotland)

Published online by Cambridge University Press:  07 February 2012

APOLLINE LEFORT*
Affiliation:
Laboratoire Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566, Nancy Université, CNRS BP 40, 54506 Vandoeuvre-les-Nancy Cedex, France
YANN HAUTEVELLE
Affiliation:
Laboratoire Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566, Nancy Université, CNRS BP 40, 54506 Vandoeuvre-les-Nancy Cedex, France
BERNARD LATHUILIÈRE
Affiliation:
Laboratoire Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566, Nancy Université, CNRS BP 40, 54506 Vandoeuvre-les-Nancy Cedex, France
VINCENT HUAULT
Affiliation:
Laboratoire Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566, Nancy Université, CNRS BP 40, 54506 Vandoeuvre-les-Nancy Cedex, France
*
*Author for correspondence: apolline.lefort@wanadoo.fr

Abstract

The composition of the soluble organic matter of the Oxfordian–Kimmeridgian Flodigarry Shale Member (Isle of Skye, Scotland) is presented for the first time. A continuous succession of silty clays and nodular limestone beds is exposed on a rocky shore to the north of Staffin Bay. This succession is proposed as a potential stratotype of the boundary between the Oxfordian and Kimmeridgian stages. This paper points out the exceptional preservation and very low thermal degradation of the organic matter. Indeed, the molecular composition is characterized by the abundance of unsaturated biomarkers (hopenes and diasterenes) as well as undamaged bioterpenoids (ferruginol and sugiol). The abundance of long-chain n-alkanes characterized by an odd-over-even predominance reveals a dominant continental contribution. This is also attested to by the relatively high amounts of plant biomarkers (e.g. ferruginol, sugiol, cadalene and retene), which suggest a palaeovegetation largely composed of pinophytes, especially Cupressaceae, Taxodiaceae and Cheirolepidiaceae, on the nearest emerged lands. The water column of the depositional environment was oxic in its upper part and rather dysoxic in its lower part. The composition of the organic matter does not significantly change along the Flodigarry Shale Member. In other words, no evolutionary events or drastic change in palaeoenvironments can be deduced from the molecular content of these sedimentary rocks, and it does not allow us to support a precise location for the Oxfordian/Kimmeridgian boundary in the succession.

Information

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbink, O., Targarona, J., Brinkhuis, H. & Visscher, H. 2001. Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the southern North Sea. Global and Planetary Change 30, 231–56.CrossRefGoogle Scholar
Alvin, K. L. 1982. Cheirolepidiaceae: biology, structure and paleoecology. Review of Palaeobotany and Palynology 37, 7198.CrossRefGoogle Scholar
Bartolini, A., Pittet, B., Mattioli, E. & Hunziker, J. C. 2003. Shallow-platform palaeoenvironmental conditions recorded in deep-shelf sediments: C and O stable isotopes in upper Jurassic sections of southern Germany (Oxfordian-Kimmeridgian). Sedimentary Geology 160, 107–30.CrossRefGoogle Scholar
Boyer, D. L. & Droser, M. L. 2007. Devonian monospecific assemblages: new insights into the ecology of reduced-oxygen depositional settings. Lethaia 40, 321–33.CrossRefGoogle Scholar
Bray, E. E. & Evans, E. D. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22, 215.CrossRefGoogle Scholar
Brocks, J. J. & Summons, R. E. 2003. Sedimentary hydrocarbons, biomarkers for early life. In Treatise on Geochemistry, Vol. 8 – Biogeochemistry (eds Holland, H. D. & Turekian, K. K.), pp. 63115. Amsterdam: Elsevier.CrossRefGoogle Scholar
Caldicott, A. B. & Eglinton, G. 1973. Phytochemistry, III. Inorganic elements and special groups of chemicals. In Inorganic Elements and Groups of Chemicals (ed. Miller, L. P.), pp. 162–94. New York: Van Nostrand-Reinhold.Google Scholar
Cariou, E. & Hantzpergue, P. 1997. Biostratigraphie du Jurassique ouest Européen et Méditerranéen. Bulletin du Centre Recherche Elf Exploration-Production, Mémoire 17, 422 pp.Google Scholar
Cecca, F., Azema, J., Fourcade, E., Baudin, F., Guiraud, R., Ricou, L. E. & Wever, P. D. 1993. Early Kimmeridgian (146–144 Ma.). In Atlas Tethys Paleoenvironmental Maps (eds Dercourt, J., Ricou, L. E. & Vrielynck, B.), pp. 97–112.Google Scholar
Cecca, F., Martin Garin, B., Marchand, D., Lathuiliere, B. & Bartolini, A. 2005. Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology 222, 1032.CrossRefGoogle Scholar
Chambers, M. 2000. The Upper Jurassic Kimmeridge Clay. Humberside Geologist 13 (online edition). Hull Geological Society, http://www.hullgeolsoc.org.uk/kimclay.htm (accessed 18 February 2011).Google Scholar
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–22.CrossRefGoogle Scholar
Eglinton, G. & Hamilton, R. J. 1967. Leaf epicuticular waxes. Science 156, 1322–35.CrossRefGoogle ScholarPubMed
Faure, P., Landais, P. & Griffault, L. 1999. Behavior of organic matter from Callovian shales during low-temperature air oxidation. Fuel 78, 1515–25.CrossRefGoogle Scholar
Foster, C. B., Grice, K., Riding, J. B. & Greenwood, P. F. 2003. Higher plant input and palynology of Middle and Upper Jurassic, Isle of Skye sediments. In 21st International Meeting on Organic Geochemistry, Society of Research on Environmental Changes “Geosphere”, Krakow, Abstracts, pp. 197–8.Google Scholar
Gallois, R. W. 1976. Coccolith blooms in the Kimmeridge Clay and origin of North Sea Oil. Nature 259, 473–5.CrossRefGoogle Scholar
Golonka, J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 235–73.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale. Cambridge: Cambridge University Press, 610 pp.Google Scholar
Grice, K., Gibbison, R., Atkinson, J. E., Schwark, L., Eckardt, C. B. & Maxwell, J. R. 1996. Maleimides (1H-pyrrole-2,5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns. Geochimica et Cosmochimica Acta 60, 3913–24.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–67.CrossRefGoogle ScholarPubMed
Hautevelle, Y., Michels, R., Malartre, F., Elie, M. & Trouiller, A. 2007. Tracing of variabilities within a geological barrier by molecular organic geochemistry: case of the Callovo-Oxfordian sedimentary series in the east of the Paris Basin (France). Applied Geochemistry 22, 736–59.Google Scholar
Hautevelle, Y., Michels, R., Malartre, F. & Trouiller, A. 2006. Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Organic Geochemistry 37, 610–25.CrossRefGoogle Scholar
Hesketh, R. A. P. & Underhill, J. R. 2002. The biostratigraphic calibration of the Scottish and Outer Moray Firth Upper Jurassic successions: a new basis for the correlation of Late Oxfordian-Early Kimmeridgian Humber Group reservoirs in the North Sea Basin. Marine and Petroleum Geology 19, 541–62.CrossRefGoogle Scholar
Huang, W.-Y. & Meinschein, W. G. 1979. Sterols as source ecological indicators. Geochimica et Cosmochimica Acta 43, 739–45.CrossRefGoogle Scholar
Hudson, J. D. & Morton, N. 1969. Field guide N°4, Western Scotland. International Field Symposium on the British Jurassic, Excursion No. 4. University of Keele.Google Scholar
Jacquin, T., Dardeau, G., Durlet, C., Graciansky, J.-C. D. & Hantzpergue, P. 1998. The North Sea cycle: an overview of 2nd-order transgressive/regressive facies cycles in western Europe. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, pp. 445–66. Society for Economic Paleontologists and Mineralogists, Special Publication no. 60.Google Scholar
Jiang, C., Alexander, R., Kagi, R. & Murray, A. P. 1998. Polycyclic aromatic hydrocarbons in ancient sediments and their relationship to paleoclimate. Organic Geochemistry 29, 1721–35.CrossRefGoogle Scholar
Killops, S. D. & Killops, V. J. 2005. Introduction to Organic Geochemistry. Oxford: Blackwell Publishing, 400 pp.Google Scholar
Killops, S. D. & Massoud, M. S. 1992. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: evidence for Jurassic vegetation fires. Organic Geochemistry 18, 17.CrossRefGoogle Scholar
Komura, T. 1974. The identification of fucosterol in the marine brown algae Hizikia fusiformis. Agricultural and Biological Chemistry 38, 2275–6.Google Scholar
Lindgren, B. O. & Svahn, C. M. 1968. Extractives of elm wood. Phytochemistry 7, 1407–8.CrossRefGoogle Scholar
Louis-Schmid, B., Rais, P., Schaeffer, P., Bernasconi, S. M. & Weissert, H. 2007. Plate tectonic trigger of changes in pCO2 and climate in the Oxfordian (Late Jurassic): carbon isotope and modeling evidence. Earth and Planetary Science Letters 258, 4460.CrossRefGoogle Scholar
Marynowski, L., Otto, A., Zatoń, M., Philippe, M. & Simoneit, B. 2007 a. Biomolecules preserved in ca. 168 million year old fossil conifer wood. Naturwissenschaften 94, 228–36.CrossRefGoogle ScholarPubMed
Marynowski, L., Philippe, M., Zatoń, M. & Hautevelle, Y. 2008. Systematic relationships of the Mesozoic wood genus Xenoxylon: an integrative biomolecular and palaeobotanical approach. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 247, 177–89.CrossRefGoogle Scholar
Marynowski, L. & Zatoń, M. 2010. Organic matter from the Callovian (Middle Jurassic) deposits of Lithuania: compositions, sources and depositional environments. Applied Geochemistry 25, 933–46.CrossRefGoogle Scholar
Marynowski, L., Zaton, M., Simoneit, B. R. T., Otto, A., Jedrysek, M. O., Grelowski, C. & Kurkiewicz, S. 2007 b. Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry 22, 2456–85.Google Scholar
Matyja, A. B., Wierzbowski, A. & Wright, J. K. 2004. Subboreal/boreal ammonite succession at the Oxfordian/Kimmeridgian boundary in the Flodigarry section (Staffin Bay, Isle of Skye, UK). Rivista Italiana di Paleontologia e Stratigrapfia 110, 273–8.Google Scholar
Matyja, A. B., Wierzbowski, A. & Wright, J. K. 2006. The Sub-Boreal/Boreal ammonite succession at the Oxfordian/Kimmeridgian boundary at Flodigarry, Staffin Bay (Isle of Skye), Scotland. Transactions of Royal Society of Edinburgh: Earth Sciences 96, 387405.CrossRefGoogle Scholar
Menor-Salván, C., Najarro, M., Velasco, F., Rosales, I., Tornos, F. & Simoneit, B. R. T. 2010. Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): paleochemotaxonomic aspects. Organic Geochemistry 41, 1089–103.CrossRefGoogle Scholar
Miller, R. G. 1990. A paleoceanographic approach to the Kimmeridge Clay Formation. In Deposition of Organic Facies (ed. Huc, A. Y.), pp. 1326. American Association of Petroleum Geologists, Studies in Geology No. 30. Tusla: AAPG.Google Scholar
Morton, N. 1987. Jurassic subsidence history in the Hebrides, NW Scotland. Marine and Petroleum Geology 4, 226–42.CrossRefGoogle Scholar
Morton, N. & Hudson, J. D. 1995. Field guide to the Jurassic of the Isles of Raasay and Skye, Inner Hebrides, NW Scotland. In Field Geology of the British Jurassic (ed Taylor, P. D.), pp. 209–80. London: The Geological Society.Google Scholar
Nabeta, K., Katayama, K., Nakagawara, S. & Katoh, K. 1992. Sesquiterpenes of cadinane type from cultured cells of the liverwort, Heteroscyphus planus . Phytochemistry 32, 117–22.CrossRefGoogle Scholar
Nguyen Tu, T. T., Derenne, S., Largeau, C., Mariotti, A., Bocherens, H. & Pons, D. 2000. Effects of fungal infection on lipid extract composition of higher plant remains: comparison of shoots of a Cenomanian conifer, uninfected and infected by extinct fungi. Organic Geochemistry 31, 1743–54.CrossRefGoogle Scholar
Nunn, E. V., Price, G. D., Hart, M. B., Page, K. N. & Leng, M. J. 2009. Isotopic signals from Callovian-Kimmeridgian (Middle-Upper Jurassic) belemnites and bulk organic carbon, Staffin Bay, Isle of Skye, Scotland. Journal of the Geological Society, London 166, 633–41.CrossRefGoogle Scholar
Ogg, J. G., Ogg, G. & Gradstein, F. M. 2008. The Concise Geologic Time Scale. Cambridge: Cambridge University Press, 184 pp.Google Scholar
Oschmann, W. 1988. Kimmeridge Clay sedimentation – a new cyclic model. Palaeogeography, Palaeoclimatology, Palaeoecology 65, 217–51.CrossRefGoogle Scholar
Oschmann, W. 1994. Distribution, dynamics and palaeoecology of Kimmeridgian (Upper Jurassic) shelf anoxia in western Europe. In Modern and Ancient Continental Shelf Anoxia (eds Tyson, R. V. & Pearson, T. H.), pp. 381–95. Geological Society of London, Special Publication no. 58.Google Scholar
Otto, A. & Simoneit, B. R. D. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz Formation, Saxony, Germany. Geochimimica et Cosmochimica Acta 65, 3505–27.CrossRefGoogle Scholar
Otto, A. & Wilde, V. 2001. Sesqui-, di- and triterpenoids as chemosystematic markers in extant conifers. Botanical Review 67, 141238.CrossRefGoogle Scholar
Ourisson, G., Albrecht, P. & Rohmer, M. 1979. The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry 51, 709–29.CrossRefGoogle Scholar
Peters, K. E., Walters, C. C. & Moldowan, J. M. 2005. The Biomarker Guide. Cambridge: Cambridge University Press, 490 pp.Google Scholar
Powell, J. H. 2010. Jurassic sedimentation in the Cleveland Basin: a review. Proceedings of the Yorkshire Geological Society 58, 2172.CrossRefGoogle Scholar
Przybylski, P. A., Ogg, J. G., Wierzbowski, A., Coe, A. L., Hounslow, M. W., Wright, J. K., Atrops, F. & Settles, E. 2010. Magnetostratigraphic correlation of the Oxfordian-Kimmeridgian boundary. Earth and Planetary Science Letters 289, 256–72.CrossRefGoogle Scholar
Rampen, S. W., Abbas, B. A., Schouten, S., Sinninghe Damste, J. S. 2010. A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnology and Oceanography 55, 91105.Google Scholar
Remane, J., Bassett, M. G., Cowie, J. W., Gohrbrandt, K. H., Lane, H. R., Michelsen, O. & Naiwen, W. 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes 19, 7781.CrossRefGoogle Scholar
Riding, J. B. & Thomas, J. E. 1997. Marine palynomorphs from the Staffin Bay and Staffin Shale formations (Middle–Upper Jurassic) of the Trotternish Peninsula, NW Skye. Scottish Journal of Geology 33, 5974.CrossRefGoogle Scholar
Rowe, J. W., Seikel, M. K., Roy, D. N. & Jorgensen, E. 1972. Chemotaxonomy of ulmus. Phytochemistry 11, 2513–17.CrossRefGoogle Scholar
Salfeld, H. 1913. Certain Upper Jurassic strata of England. Quarterly Journal of the Geological Society, London 69, 423–30.CrossRefGoogle Scholar
Sankaram, A. V. B., Reddy, N. S. & Shoolery, J. N. 1981. New sesquiterpenoids of Bombax malabaricum . Phytochemistry 20, 1877–81.CrossRefGoogle Scholar
Selby, D. 2007. Direct rhenium-osmium age of the Oxfordian-Kimmeridgian boundary, Staffin bay, Isle of Skye, U.K., and the Late Jurassic time scale. Norwegian Journal of Geology 87, 291–99.Google Scholar
Seifert, W. K. & Moldowan, J. M. 1981. Paleoreconstruction of biological markers. Geochimica et Cosmochimica Acta 45, 783–94.CrossRefGoogle Scholar
Sellwood, B. W. & Valdes, P. J. 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190, 269–87.CrossRefGoogle Scholar
Sieskind, O., Joly, G. & Albrecht, P. 1979. Simulation of the geochemical transformations of sterols: superacid effect of clay minerals. Geochimica et Cosmochimica Acta 43, 1675–9.CrossRefGoogle Scholar
Simoneit, B. R. D. 1986. Cyclic terpenoids of the geosphere. In Biological Markers in the Sedimentary Records (ed. John, R. B.), pp. 4399. Amsterdam: Elsevier.Google Scholar
Stancliffe, R. P. W. 1990. Acritarchs and other non-dinophycean marine palynomorphs from the Oxfordian (Upper Jurassic) of Skye, western Scotland, and Dorset, southern England. Palynology 14, 175–92.CrossRefGoogle Scholar
Summons, R. E. & Powell, T. G. 1987. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochimica et Cosmochimica Acta 51, 557–66.CrossRefGoogle Scholar
Sykes, R. M. & Callomon, J. H. 1979. The Amoeboceras zonation of the Boreal Upper Oxfordian. Palaeontology 22, 839903.Google Scholar
Tissot, B., Pelet, R., Roucoche, J. & Combaz, J. 1977. Alkanes as geochemical fossil indicators of geological environments. In Advances in Organic Geochemistry (eds Campo, R. & Goni, J.), pp. 117–54. Madrid: Enadimsa.Google Scholar
Tissot, B. P. & Welte, D. H. 1984. Petroleum Formation and Occurrence. Berlin: Springer-Verlag, 699 pp.CrossRefGoogle Scholar
Thierry, J. 2000. Early Kimmeridgian (146–144 Ma). Map 10. In Atlas Peri-Tethys Paleoenvironmental Maps (eds Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F., Cadet, J. P., Crasquin, S. & Sandulescu, M.), pp. 8597. Commission for the Geological Map of the World.Google Scholar
Traverse, A. 1988. Paleopalynology. Boston: Unwin Hyman, 600 pp.Google Scholar
Turner, J. 1966. The Oxford Clay of Skye, Scalpay and Eigg. Scottish Journal of Geology 2, 243–52.CrossRefGoogle Scholar
Tyson, R. V., Wilson, R. C. L. & Downie, C. 1979 A stratified water column environmental model of the type Kimmeridge Clay. Nature 277, 377–80.CrossRefGoogle Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth (trans. Litvinov, J. F.; ed. Hughes, N. F.). Cambridge: Cambridge University Press, 318 pp.Google Scholar
Van Aarssen, B. G. K., Alexander, R. & Kagi, R. I. 2000. Higher plant biomarkers reflect palaeovegetation changes during Jurassic times. Geochimica et Cosmochimica Acta 64, 1417–24.CrossRefGoogle Scholar
Volkman, J. K. & Maxwell, J. R. 1986. Acyclic isoprenoids as biological markers. In Biological Markers in the Sedimentary Record (ed. Johns, R. B.), pp. 142. Amsterdam: Elsevier.Google Scholar
Welte, D. H. & Waples, D. 1973. Uber die Bevorzugung geradzahliger n-alkane in sedimentgesteinen. Naturwissenschaften 60, 516–17.CrossRefGoogle Scholar
Wierzbowski, H. 2004. Carbon and oxygen isotope composition of Oxfordian-Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 153–68.CrossRefGoogle Scholar
Wierzbowski, A. 2010. Kimmeridgian Working Group. International Subcommission on Jurassic Stratigraphy Newsletter 36, 1316.Google Scholar
Wierzbowski, A., Coe, A. L., Hounslow, M. W., Matyja, B. A., Ogg, J. G., Page, K. N., Wierzbowski, H. & Wright, J. K. 2006. A potential stratotype for the Oxfordian/Kimmeridgian boundary: Staffin Bay, Isle of Skye, UK. Volumina Jurassica 4, 1733.Google Scholar
Wright, J. K. 1989. The early Kimmeridgian ammonite succession at Staffin, Isle of Skye. Scottish Journal of Geology 25, 263–72.CrossRefGoogle Scholar
Wright, J. K. 2003. New exposures of the Ampthill Clay near Swindon, Wiltshire, and their significance within the succession of Oxfordian-Kimmeridgian boundary beds in southern England. Proceedings of the Geologists’ Association 114, 97121.CrossRefGoogle Scholar
Wright, J. K. & Cox, B. M. 2001. British Upper Jurassic Stratigraphy (Oxfordian to Kimmeridgian). Geological Conservation Review Series 21. Peterborough: Joint Nature Conservation Committee, 266 pp.Google Scholar
Ziegler, P. A. 1990. Geological Atlas of Western and Central Europe, 2nd ed. Shell International Petroleum Maatschappij, pp. 91122.Google Scholar
Zeiss, A. 2003. The Upper Jurassic of Europe: its subdivision and correlation. In The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin 1, 75–114.Google Scholar