Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 8
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Payros, Aitor Martínez-Braceras, Naroa and Baas, Jaco 2014. Orbital forcing in turbidite accumulation during the Eocene greenhouse interval. Sedimentology, Vol. 61, Issue. 5, p. 1411.


    Tori, Flavia and Monechi, Simonetta 2013. Lutetian calcareous nannofossil events in the Agost section (Spain): implications toward a revision of the Middle Eocene biomagnetostratigraphy. Lethaia, Vol. 46, Issue. 3, p. 293.


    Payros, Aitor Ortiz, Silvia Millán, Isabel Arostegi, Javier Orue-Etxebarria, Xabier and Apellaniz, Estibaliz 2015. Early Eocene climatic optimum: Environmental impact on the North Iberian continental margin. Geological Society of America Bulletin, Vol. 127, Issue. 11-12, p. 1632.


    Payros, Aitor Ortiz, Silvia Alegret, Laia Orue-Etxebarria, Xabier Apellaniz, Estibaliz and Molina, Eustoquio 2012. An early Lutetian carbon-cycle perturbation: Insights from the Gorrondatxe section (western Pyrenees, Bay of Biscay). Paleoceanography, Vol. 27, Issue. 2, p. n/a.


    Rodríguez-Pintó, A. Pueyo, E.L. Serra-Kiel, J. Samsó, J.M. Barnolas, A. and Pocoví, A. 2012. Lutetian magnetostratigraphic calibration of larger foraminifera zonation (SBZ) in the Southern Pyrenees: The Isuela section. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 333-334, p. 107.


    Franceschi, Marco Penasa, Luca Coccioni, Rodolfo Gattacceca, Jérôme Smit, Jan Cascella, Antonio Mariani, Sandro and Montanari, Alessandro 2015. Terrestrial Laser Scanner imaging for the cyclostratigraphy and astronomical tuning of the Ypresian–Lutetian pelagic section of Smirra (Umbria–Marche Basin, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 440, p. 33.


    Rodríguez-Pintó, A. Pueyo, E.L. Serra-Kiel, J. Barnolas, A. Samsó, J.M. and Pocoví, A. 2013. The Upper Ypresian and Lutetian in San Pelegrín section (Southwestern Pyrenean Basin): Magnetostratigraphy and larger foraminifera correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 370, p. 13.


    Tauxe, L. Stickley, C. E. Sugisaki, S. Bijl, P. K. Bohaty, S. M. Brinkhuis, H. Escutia, C. Flores, J. A. Houben, A. J. P. Iwai, M. Jiménez-Espejo, F. McKay, R. Passchier, S. Pross, J. Riesselman, C. R. Röhl, U. Sangiorgi, F. Welsh, K. Klaus, A. Fehr, A. Bendle, J. A. P. Dunbar, R. Gonzàlez, J. Hayden, T. Katsuki, K. Olney, M. P. Pekar, S. F. Shrivastava, P. K. van de Flierdt, T. Williams, T. and Yamane, M. 2012. Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: Constraints for paleoceanographic reconstruction. Paleoceanography, Vol. 27, Issue. 2, p. n/a.


    ×

On the age of the Early/Middle Eocene boundary and other related events: cyclostratigraphic refinements from the Pyrenean Otsakar section and the Lutetian GSSP

  • A. PAYROS (a1), J. DINARÈS-TURELL (a2), G. BERNAOLA (a3), X. ORUE-ETXEBARRIA (a1), E. APELLANIZ (a1) and J. TOSQUELLA (a4)
  • DOI: http://dx.doi.org/10.1017/S0016756810000890
  • Published online: 03 November 2010
Abstract
Abstract

An integrated bio-, magneto- and cyclostratigraphic study of the Ypresian/Lutetian (Early/Middle Eocene) transition along the Otsakar section resulted in the identification of the C22n/C21r chron boundary and of the calcareous nannofossil CP12a/b zonal boundary; the latter is the main correlation criterion of the Lutetian Global Stratotype Section and Point (GSSP) recently defined at Gorrondatxe (Basque Country). By counting precession-related mudstone–marl couplets of 21 ka, the time lapse between both events was calculated to be 819 ka. This suggests that the age of the CP12a/b boundary, and hence that of the Early/Middle Eocene boundary, is 47.76 Ma, 250 ka younger than previously thought. This age agrees with, and is supported by, estimates from Gorrondatxe based on the time lapse between the Lutetian GSSP and the C21r/C21n boundary. The duration of Chron C21r is estimated at 1.326 Ma. Given that the base of the Eocene is dated at 55.8 Ma, the duration of the Early Eocene is 8 Ma, 0.8 Ma longer than in current time scales. The Otsakar results further show that the bases of planktonic foraminiferal zones E8 and P10 are younger than the CP12a/b boundary. The first occurrence of Turborotalia frontosa, being approximately 550 ka older that the CP12a/b boundary, is the planktonic foraminiferal event that lies closest to the Early/Middle Eocene boundary. The larger foraminiferal SBZ12/13 boundary is located close to the CP12a/b boundary and correlates with Chron C21r, not with the C22n/C21r boundary.

Copyright
Corresponding author
Author for correspondence: a.payros@ehu.es
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. Agnini , G. Muttoni , D. V. Kent & D. Rio 2006. Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: the calcareous nannofossil response to climate variability. Earth and Planetary Science Letters 241, 815–30.

W. A. Berggren , D. V. Kent , C. C. Swisher III & M. P. Aubry 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds W. A. Berggren , D. V. Kent , M. P. Aubry & J. Hardenbol ), pp. 129212. Tulsa, USA: SEPM, Special Publication no. 54.

W. A. Berggren & P. N. Pearson 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research 35, 279–98.

P. R. Bown 2005. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33, 653–6.

J. Dinarès-Turell , J. I. Baceta , G. Bernaola , X. Orue-Etxebarria & V. Pujalte 2007. Closing the Mid-Paleocene gap: toward a complete astronomically tuned Paleocene Epoch and Selandian and Thanetian GSSPs at Zumaia (Basque Basin, W Pyrenees). Earth and Planetary Science Letters 262, 450–67.

J. Dinarès-Turell , J. I. Baceta , V. Pujalte , X. Orue-Etxebarria & G. Bernaola 2002. Magnetostratigraphic and cyclostratigraphic calibration of a prospective Paleocene/Eocene stratotype at Zumaia (Basque Basin, northern Spain). Terra Nova 14, 371–8.

J. Dinarès-Turell , J. I. Baceta , V. Pujalte , X. Orue-Etxebarria , G. Bernaola & S. Lorito 2003. Untangling the Paleocene climate: an astronomically calibrated Lower Paleocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, Northern Spain). Earth and Planetary Science Letters 216, 483500.

S. Galeotti , S. Krishnan , M. Pagani , L. Lanci , A. Gaudio , J. C. Zachos , S. Monechi , G. Morelli & L. Lourens 2010. Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth and Planetary Science Letters 290, 192200.

T. G. Gibson 1989. Planktonic benthonic foraminiferal ratios: modern patterns and Tertiary applicability. Marine Micropaleontology 15, 2952.

J. L. Kirschvink 1980. The least-square line and plane and analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.

K. P. Kodama , D. J. Anastasio , M. L. Newton , J. M. Pares & L. A. Hinnov 2010. High-resolution rock magnetic cyclostratigraphy in an Eocene flysch, Spanish Pyrenees. Geochemistry Geophysics Geosystems 11, Q0AA07, doi: 10.1029/2010GC003069.

J. C. Larrasoaña , C. Gonzalvo , E. Molina , S. Monechi , S. Ortiz , F. Tori & J. Tosquella 2008. Integrated magnetobiochronology of the Early/Middle Eocene transition at Agost (Spain): implications for defining the Ypresian/Lutetian boundary stratotype. Lethaia 41, 395415.

R. Nigam & P. J. Henriques 1992. Planktonic percentage of foraminiferal fauna in surface sediments of the Arabian Sea (Indian Ocean) and a regional model for paleodepth determination. Palaeogeography, Palaeoclimatology, Palaeoecology 91, 8998.

H. Okada & D. Bukry 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology 5, 321–5.

S. Ortiz , C. Gonzalvo , E. Molina , F. J. Rodriguez-Tovar , A. Uchman , N. Vandenberghe & E. Zeelmaekers 2008. Palaeoenvironmental turnover across the Ypresian-Lutetian transition at the Agost section, southeastern Spain: in search of a marker event to define the Stratotype for the base of the Lutetian Stage. Marine Micropaleontology 69, 297313.

H. Pälike , N. J. Shackleton & U. Röhl 2001. Astronomical forcing in Late Eocene marine sediments. Earth and Planetary Science Letters 193, 589602.

A. Payros , G. Bernaola , G. Orue-Etxebarria , J. Dinarès-Turell , J. Tosquella & E. Apellaniz 2007. Reassessment of the Early-Middle Eocene biomagnetochronology based on evidence from the Gorrondatxe section (Basque Country, western Pyrenees). Lethaia 40, 183–95.

A. Payros , X. Orue-Etxebarria , G. Bernaola , E. Apellaniz , J. Dinarès-Turell , J. Tosquella & F. Caballero 2009 a. Characterization and astronomically calibrated age of the first occurrence of Turborotalia frontosa in the Gorrondatxe section, a prospective Lutetian GSSP: implications for the Eocene time scale. Lethaia 42, 255–64.

A. Payros , X. Orue-Etxebarria & V. Pujalte 2006. Covarying sedimentary and biotic fluctuations in Lower-Middle Eocene Pyrenean deep-sea deposits: palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 258–76.

A. Payros , V. Pujalte & X. Orue-Etxebarria 2007. A point-sourced calciclastic submarine fan complex (Eocene Anotz Formation, western Pyrenees): facies architecture, evolution and controlling factors. Sedimentology 54, 137–68.

A. Payros , J. Tosquella , G. Bernaola , J. Dinarès-Turell , X. Orue-Etxebarria & V. Pujalte 2009 c. Filling the North European Early/Middle Eocene (Ypresian/Lutetian) boundary gap: insights from the Pyrenean continental to deep-marine record. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 313–32.

J. C. Plaziat 1981. Late Cretaceous to Late Eocene paleogeographic evolution of southwest Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 36, 263320.

F. Rögl & H. Egger 2010. The missing link in the evolutionary origin of the foraminiferal genus Hantkenina and the problem of the lower-middle Eocene boundary. Geology 38, 23–6.

G. J. Van Der Zwaan , F. J. Jorissen & H. C. De Stigter 1990. The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications. Marine Geology 95, 116.

B. S. Wade & H. Pälike 2004. Oligocene climate dynamics. Paleoceanography 19, PA4019, doi: 10.1029/2004PA001042.

T. Westerhold & U. Röhl 2009. High resolution cyclostratigraphy of the early Eocene: new insights into the origin of the Cenozoic cooling trend. Climate of the Past 5, 309–27.

T. Westerhold , U. Röhl , H. K. Mccarren & J. C. Zachos 2009. Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and -17. Earth and Planetary Science Letters 287, 412–19.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: