Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T22:14:06.640Z Has data issue: false hasContentIssue false

The origin of Patagonia: insights from Permian to Middle Triassic magmatism of the North Patagonian Massif

Published online by Cambridge University Press:  29 June 2022

Juan Ignacio Falco*
Affiliation:
Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio (IIDyPCa), CONICET – Universidad Nacional de Río Negro, Mitre 630, CP 8400, San Carlos de Bariloche, Argentina
Natalia Hauser
Affiliation:
Laboratorio de Geocronología e Geoquímica Isotópica, Instituto de Geociências, Universidade de Brasília (UnB), Brasília, DF70910-900, Brazil
Nicolás Scivetti
Affiliation:
Instituto Patagónico de Geología y Paleontología – IPGP (CENPAT-CONICET), Puerto Madryn, Argentina
Wolf Uwe Reimold
Affiliation:
Laboratorio de Geocronología e Geoquímica Isotópica, Instituto de Geociências, Universidade de Brasília (UnB), Brasília, DF70910-900, Brazil
Andres Folguera
Affiliation:
Instituto de Estudios Andinos, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
*
Author for correspondence: Juan Ignacio Falco, Email: falco.juan@gmail.com

Abstract

We conducted a U–Pb–Hf isotope study on zircon crystals from ignimbrites of the Changhsingian to Olenekian (253–248 Ma) Los Menucos Basin in the North Patagonian Massif (NPM), Argentina, in order to evaluate the age and petrogenesis of the magmas. Additionally, a compilation of whole-rock geochemistry and U–Pb–Hf in zircon isotope data for the Permian to Middle Triassic rocks of the NPM, for comparison with our data, was made to assess whether Patagonia would have been an exotic terrane accreted to SW Gondwana during the late Palaeozoic. We interpret the available U–Pb–Hf data to suggest that northern Patagonia experienced eastward arc expansion from the early Permian, about 273 Ma ago. This ∼820 km arc expansion event involved crustal shortening and magmatism with high-silica adakitic affinity, resulting in Hf-isotopic pull-down. At 253 Ma, slab steepening became associated with the coeval emplacement of ignimbrites of the Los Menucos Basin, which involved post-orogenic to intraplate magmatism. During the Middle Triassic, a slab break-off triggered uplift and basaltic underplating, promoting the emplacement of dike swarms with C-type adakitic signature at 246–244 Ma. The Hf isotope data for SW Gondwana for the same period indicate distinct trends that are explained here by differential slab roll-back since the Guadalupian, in a slab-tearing setting. Therefore, Permian to Middle Triassic magmatism is interpreted as having been associated with an eastward-directed proto-Pacific subduction system, which ultimately supports an autochthonous origin for Patagonia.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ávila, JN, Chemale, F Jr, Mallmann, G, Kawashita, K and Armstrong, RA (2006) Combined stratigraphic and isotopic studies of Triassic strata, Cuyo Basin, Argentine Precordillera. Bulletin of the Geological Society of America 118, 1088–98.CrossRefGoogle Scholar
Azcuy, CL and Caminos, R (1987) Capítulo 11: Diastrofismo. In El Sistema Carbonífero en la República Argentina (ed. Archangelsky, S), pp. 239–52. Córdoba: Academia Nacional de Ciencias.Google Scholar
Balgord, E (2017) Triassic to Neogene evolution of the south-central Andean arc determined by detrital zircon U-Pb and Hf analysis of Neuquén Basin strata, central Argentina (34°S–40°S). Lithosphere 9, 453–62.CrossRefGoogle Scholar
Barrionuevo, M, Arnosio, M and Llambías, EJ (2013) Nuevos datos geocronológicos en subsuelo y afloramientos del Grupo Choiyoi en el oeste de La Pampa: implicancias estratigráficas. Revista de la Asociación Geológica Argentina 70, 31–9.Google Scholar
Bastias-Mercado, F, González, J and Oliveros, V (2020) Volumetric and compositional estimation of the Choiyoi Magmatic Province and its comparison with other Silicic Large Igneous Provinces. Journal of South American Earth Sciences 103, 102749.CrossRefGoogle Scholar
Bodnar, J, Coturel, E, Falco, JI and Beltran, M (2021) An updated scenario for the end-Permian crisis and the recovery of Triassic land flora in Argentina. Historical Biology 33, 36543672.CrossRefGoogle Scholar
Bühn, B, Pimentel, MM, Matteini, M and Dantas, E (2009) High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Anais da Academia Brasileira de Ciências 81, 99114.CrossRefGoogle Scholar
Canile, FM, Babinski, M and Rocha-Campos, AC (2016) Evolution of the Carboniferous-early Cretaceous units of Paraná Basin from provenance studies based on U-Pb, Hf and O isotopes from detrital zircons. Gondwana Research 40, 142–69.CrossRefGoogle Scholar
Castillo, P, Fanning, CM, Pankhurst, RJ, Hervé, F and Rapela, CW (2017) Zircon O- and Hf-isotope constraints on the genesis and tectonic significance of Permian magmatism in Patagonia. Journal of the Geological Society 175, 803–16.CrossRefGoogle Scholar
Castillo, P, Fanning, MC, Hervé, F and Lacassie, JP (2016) Characterization and tracing of Permian magmatism in the south-western segment of the Gondwanan margin; U-Pb, Lu-Hf and O isotopic compositions of detrital zircons from metasedimentary complexes of northern Antarctic Peninsula and western Patagonia. Gondwana Research 36, 113.CrossRefGoogle Scholar
Cawood, PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69, 249–79.CrossRefGoogle Scholar
Chapman, J and Ducea, M (2019) The role of arc migration in Cordilleran orogenic cyclicity. Geology 47, 627–31.CrossRefGoogle Scholar
Chapman, J, Ducea, M, Kapp, P, Gehrels, G and Decelles, P (2017) Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research 48, 189204.CrossRefGoogle Scholar
Chernicoff, CJ and Zappettini, EO (2004) Geophysical evidence for terrane boundaries in South-Central Argentina. Gondwana Research 7, 1105–16.CrossRefGoogle Scholar
Chernicoff, CJ, Zappettini, EO, Santos, JO and McNaughton, N (2019) El Corredor Magmático Intracratónico Pérmico-Triásico de la provincia de La Pampa, Argentina: nuevas edades U-Pb SHRIMP, composición isotópica de Hf e implicancias geodinámicas. Revista Mexicana de Ciencias Geológicas 36, 1326.CrossRefGoogle Scholar
Chernicoff, CJ, Zappettini, EO, Santos, JO, McNaughton, N and Belousova, E (2013) Combined U–Pb SHRIMP and Hf isotope study of the late Paleozoic Yaminué complex, Río Negro province, Argentina: implications for the origin and evolution of the Patagonia composite terrane. Geoscience Frontiers 4, 3756.CrossRefGoogle Scholar
Citton, P, De Valais, S, Díaz-Martínez, I, González, S, Grecco, G, Cónsole-Gonella, C and Leonardi, G (2021) Age-constrained therapsid tracks from a mid-latitude upland (Permian–Triassic transition, Los Menucos Complex, Argentina). Journal of South American Earth Sciences 110, 103367.CrossRefGoogle Scholar
Dalziel, I, Lawver, L and Murphy, J (2000). Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters 178, 111.CrossRefGoogle Scholar
Decelles, PG, Ducea, MN, Kapp, P and Zandt, G (2009) Cyclicity in Cordilleran orogenic systems. Nature Geoscience 2, 251–7.CrossRefGoogle Scholar
Deckart, K, Hervé, F, Fanning, M, Ramírez, V, Calderón, M and Godoy, E (2014) U-Pb geochronology and Hf-O isotopes of zircons from the Pennsylvanian Coastal Batholith, south-central Chile. Andean Geology 41, 4982.CrossRefGoogle Scholar
Defant, MJ and Drummond, MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662665.CrossRefGoogle Scholar
Del Rey, A, Deckart, K, Arriagada, C and Martínez, F (2016) Resolving the paradigm of the late Paleozoic-Triassic Chilean magmatism: isotopic approach. Gondwana Research 37, 172–81.CrossRefGoogle Scholar
Del Rey, A, Deckart, K, Planavsky, N, Arriagada, C and Martínez, F (2019) Tectonic evolution of the southwestern margin of Pangea and its global implications: evidence from the mid Permian–Triassic magmatism along the Chilean-Argentine border. Gondwana Research 76, 303–21.CrossRefGoogle Scholar
Falco, JI, Bodnar, J and Del Río, D (2020) Revisión estratigráfica del Grupo Los Menucos, Pérmico tardío – Triásico temprano del Macizo Nordpatagónico, Prov. de Río Negro, Argentina. Revista de la Asociación Geológica Argentina 77, 532–55.Google Scholar
Fanning, C, Hervé, F and Pankhurst, R (2011) Lu-Hf isotope evidence for the provenance of Permian detritus in accretionary complexes of western Patagonia and the northern Antarctic Peninsula region. Journal of South American Earth Sciences 32, 485–96.CrossRefGoogle Scholar
Gianni, G, Navarrete, C and Spagnoto, S (2019) Surface and mantle records reveal an ancient slab tear beneath Gondwana. Scientific Reports 9, 19774.CrossRefGoogle ScholarPubMed
Gianni, G and Pérez, L (2021) Geodynamic controls on magmatic arc migration and quiescence. Earth Science Reviews 218, 103676.CrossRefGoogle Scholar
González, P, Giacosa, R, Lagorio, S, Ballivian Justiniano, C, Sato, A, Cábana, MC, Basei, M, Busteros, A and Silva Nieto, D (2021) U–Pb geochronology of the meta-volcanic rocks from Sierra de Calcatapul: implications for the Middle Triassic syn-rift volcanism and tectonic evolution of northern extra-Andean Patagonia. Journal of South American Earth Sciences 108, 103170.CrossRefGoogle Scholar
González, P, Naipauer, M, Sato, A, Varela, R, Basei, M, Cábana, C, Vlach, S, Arce, M and Parada, M (2020) Early Paleozoic structural and metamorphic evolution of the Transpatagonian Orogen related to Gondwana assembly. International Journal of Earth Sciences 110, 81111.CrossRefGoogle Scholar
González, P, Sato, A, Naipauer, M, Varela, R, Basei, M and Sato, K (2018) Patagonia-Antarctica Early Paleozoic conjugate margins: Cambrian synsedimentary silicic magmatism, U–Pb dating of K-bentonites, and related volcanogenic rocks. Gondwana Research 63, 186225.CrossRefGoogle Scholar
González, SN, Greco, G, González, P, Sato, AM, Llambías, E and Varela, R (2016) Geochemistry of a Triassic dyke swarm in the North Patagonian Massif, Argentina: implications for a postorogenic event of the Permian Gondwanide orogeny. Journal of South American Earth Sciences 70, 6982.CrossRefGoogle Scholar
González, SN, Greco, G, Sato, AM, Llambías, EJ, Basei, M, González, P and Díaz, P (2017) Middle Triassic trachytic lava flows associated with coeval dyke swarm in the North Patagonian Massif: a postorogenic magmatism related to extensional collapse of the Gondwanide orogen. Journal of South American Earth Sciences 75, 134–43.CrossRefGoogle Scholar
González, SN, Greco, GA, González, PD, Sato, AM, Llambías, EJ, Varela, R and Basei, MAS (2014) Geología, petrografía y edad U-Pb de un enjambre longitudinal NO-SE de diques del Macizo Nordpatagónico oriental, Río Negro. Revista de la Asociación Geológica Argentina 71, 174–83.Google Scholar
Govers, R and Wortel, MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters 236, 505–23.CrossRefGoogle Scholar
Greco, GA, González, SN, Sato, AM, González, PD, Basei, M, Llambías, EJ and Varela, R (2017) The Nahuel Niyeu basin: a Cambrian forearc basin in the eastern North Patagonian Massif. Journal of South American Earth Science 79, 111–36.CrossRefGoogle Scholar
Gregori, DA, Kostadinoff, J, Strazzere, L and Raniolo, A (2008) Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Research 14, 429–50.CrossRefGoogle Scholar
Gregori, DA, Strazzere, L, Barros, M, Benedini, L, Marcos, P and Kostadinoff, J (2020) The Mencué batholith: Permian episodic arc-related magmatism in the western North Patagonian Massif, Argentina. International Geology Review 63, 317341.CrossRefGoogle Scholar
Gulbranson, EL, Ciccioli, PL, Montañez, IP, Marenssi, SA, Limarino, CO, Schmitz, MD and Davidov, V (2015) Paleoenvironments and age of the Talampaya Formation: the Permo-Triassic boundary in northwestern Argentina. Journal of South American Earth Sciences 63, 310–22.CrossRefGoogle Scholar
Gutscher, M, Dominguez, S, de Lepinay, B, Pinheiro, L, Gallais, F, Babonneau, N, Cattaneo, A, Faou, Y, Barreca, G, Micallef, A and Rovere, M (2016) Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics 34, 117.Google Scholar
Hauser, N, Cabaleri, NG, Gallego, OF, Monferran, MD, Silva Nieto, D, Armella, C, Matteini, M, Aparicio González, PA, Pimentel, MM, Volkheimer, V and Reimold, WU (2017) U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: implications for the magmatic evolution in central Patagonia. Journal of South American Earth Sciences 78, 190212.CrossRefGoogle Scholar
Heredia, N, García-Sansegundo, J, Gallastegui, G, Farias, P, Giacosa, RE, Giambiagi, LB, Busquets, P, Colombo, F, Charrier, R, Cuesta, A, Rubio-Ordóñez, A and Ramos, VA (2018). Review of the geodynamic evolution of the SW margin of the Gondwana preserved in the Central Andes of Argentina and Chile (28° – 38°S latitude). Journal of South American Earth Sciences 87, 8794.CrossRefGoogle Scholar
Hervé, F, Calderón, M, Fanning, CM, Pankhurst, RJ, Fuentes, F, Rapela, CW, Correar, J, Quezada, P and Marambio, C (2016). Devonian magmatism in the accretionary complex of southern Chile. Journal of the Geological Society 173, 587602.CrossRefGoogle Scholar
Hervé, F, Calderón, M, Fanning, M, Pankhurst, R and Godoy, E (2013) Provenance variations in the Late Paleozoic accretionary complex of central Chile as indicated by detrital zircons. Gondwana Research 23, 1122–35.CrossRefGoogle Scholar
Hervé, F, Fanning, CM, Calderón, M and Mpodozis, C (2014) Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28°–31°S): SHRIMP U-Pb zircon ages and Lu-Hf and O isotope systematics. Lithos 184, 436–46.CrossRefGoogle Scholar
Jones, R, Kirstein, L, Kasemann, S, Dhuime, B, Elliott, T, Litvak, V, Alonso, R and Hinton, R (2015) Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon. Geochimica et Cosmochimica Acta 164, 386402.CrossRefGoogle Scholar
Karaoğlu, Ö and Helvaci, C (2014) Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos 192, 226–39.CrossRefGoogle Scholar
Kemp, AIS, Hawkesworth, CJ, Collins, WJ, Gray, CM and Blevin, PL (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth and Planetary Science Letters 284, 455–66.CrossRefGoogle Scholar
Kemp, AIS, Hawkesworth, CJ, Foster, GL, Paterson, BA, Woodhead, JD, Hergt, JM, Gray, CM and Whitehouse, MJ (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315, 980–3.CrossRefGoogle Scholar
Kleiman, LE and Japas, MS (2009) The Choiyoi volcanic province at 34°–36°S (San Rafael, Mendoza, Argentina): implications for the late Paleozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473, 283–99.CrossRefGoogle Scholar
Kneller, E and van Keken, P (2008) Effect of three-dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy. Geochemistry Geophysics Geosystems 9, Q01003.CrossRefGoogle Scholar
Kundu, B and Santosh, M (2011) Dynamics of post-slab breakoff in convergent plate margins: a “jellyfish” model. American Journal of Science 311, 701–17.CrossRefGoogle Scholar
Labudia, CH and Bjerg, EA (2001) El Grupo Los Menucos: redefinición estratigráfica del Triásico Superior del Macizo Nordpatagónico. Revista de la Asociación Geológica Argentina 56, 404–7.Google Scholar
Lema, H, Busteros, B, Giacosa, R and Cucchi, R (2008) Geología del Complejo Volcánico Los Menucos en el área tipo – Rio Negro. Revista de la Asociación Geológica Argentina 63, 313.Google Scholar
Limarino, CO and Spalletti, LA (2006) Paleogeography of the upper Paleozoic basins of southern South America: An overview. Journal of South American Earth Science 22(3-4), 134155.CrossRefGoogle Scholar
Llambías, EJ (1999). Las rocas ígneas gondwánicas. El magmatismo Gondwánico durante el Paleozoico Superior – Triásico. In Geología Argentina (ed Caminos, R), pp. 349–76. Argentina: Instituto de Geología y Recursos Minerales, Anales no. 29.Google Scholar
Llambías, EJ and Rapela, CW (1984) Geología de los complejos eruptivos del Paleozoico superior de La Esperanza, provincia de Río Negro. Revista de la Asociación Geológica Argentina 40, 425.Google Scholar
Lock, B (1980) Flat-plate subduction and the Cape Fold Belt of South Africa. Geology 8, 35–9.2.0.CO;2>CrossRefGoogle Scholar
López de Luchi, M, Martínez Dopico, C and Rapalini, A (2020) The Permian to early Triassic granitoids of the Nahuel Niyeu – Yaminué area, northern Patagonia: igneous stratigraphy, geochemistry and emplacement conditions. Journal of South American Earth Sciences 106, 102894.CrossRefGoogle Scholar
López de Luchi, MG and Cerredo, ME (2008) Geochemistry of the Mamil Choique granitoids at Río Chico, Río Negro, Argentina: late Paleozoic crustal melting in the North Patagonian Massif. Journal of South American Earth Sciences 25, 526–46.CrossRefGoogle Scholar
Ludwig, K and Mundil, R (2002) Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochemica et Cosmochimica Acta 66, 461.Google Scholar
Luppo, T, López de Luchi, M, Rapalini, A, Martínez Dopico, C and Fanning, CM (2018). Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary. Journal of South American Earth Sciences 82, 346–55.CrossRefGoogle Scholar
Luppo, T, Martínez Dopico, C, Rapalini, AE, López de Luchi, MG, Miguez, M and Fanning, CM 2019. Paleomagnetism of Permo-Triassic volcanic units in northern Patagonia: are we tracking the final stages of collision of Patagonia? International Journal of Earth Sciences 108, 621–47.CrossRefGoogle Scholar
Marcos, P, Pavon Pivetta, C, Benedini, L, Gregori, D, Geraldes, M, Scivetti, N, Barros, M, Varela, ME and Dos Santos, A (2020). Late Paleozoic geodynamic evolution of the western North Patagonian Massif and its tectonic context along the southwestern Gondwana margin. Lithos 376–377, 105801.CrossRefGoogle Scholar
Martínez Dopico, C, Antonio, J, Rapalini, A, López de Luchi, M and Grillo Vidal, C (2020). Reconciling Patagonia with Gondwana in early Paleozoic? Paleomagnetism of the Valcheta granites, NE North Patagonian Massif. Journal of South American Earth Sciences 106, 102970.CrossRefGoogle Scholar
Martínez Dopico, C, López de Luchi, M, Rapalini, AE and Kleinhanns, IC (2011). Crustal segments in the North Patagonian Massif, Patagonia: an integrated perspective based on Sm/Nd isotope systematics. Journal of South American Earth Sciences 31, 324–41.CrossRefGoogle Scholar
Martínez Dopico, CI, López de Luchi, MG, Rapalini, AE, Fanning, CM and Antonio, PYJ (2019) Geochemistry and geochronology of the shallow-level La Esperanza magmatic system (Permian-Triassic), Northern Patagonia. Journal of South American Earth Sciences 96, 102347.CrossRefGoogle Scholar
Martínez Dopico, CI, López de Luchi, MG, Rapalini, AE, Wemmer, K, Fanning, CM and Basei, MAS (2017) Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case. Tectonophysics 712–713, 249–69.CrossRefGoogle Scholar
Matteini, M, Dantas, E., Pimentel, M and Bühn, B (2010) Combined U-Pb and Lu-Hf isotope analyses by laser ablation MC-ICP-MS: methodology and applications. Annals of the Brazilian Academy of Science 82, 479–91.CrossRefGoogle Scholar
Mosquera, A Silvestro, J, Ramos, VA, Alarcón, M and Zubiri, M (2011) La estructura de la Dorsal de Huincul. In Relatorio XVIII Congreso Geológico Argentino (eds Leanza, H, Arregui, C, Carbone, O, Vallés, O and Danieli, J), pp. 385–98. Argentina: Asociación Geológica Argentina.Google Scholar
Moyen, JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112, 556574.CrossRefGoogle Scholar
Mullen, E and Weis, D (2015) Evidence for trench-parallel mantle flow in the northern Cascade Arc from basalt geochemistry. Earth and Planetary Science Letters 414, 100–7.CrossRefGoogle Scholar
Munizaga, F, Maksaev, V, Fanning, C, Giglio, S, Yaxley, G and Tassinari, C (2008) Late Paleozoic–Early Triassic magmatism on the western margin of Gondwana: Collahuasi area, Northern Chile. Gondwana Research 13, 407–27.CrossRefGoogle Scholar
Naipauer, M, García Morabito, E, Manassero, M, Valencia, V and Ramos, V (2018) A provenance analysis from the Lower Jurassic units of the Neuquén Basin: volcanic arc or intraplate magmatic input? In The Evolution of Chilean-Argentinian Andes (eds Folguera, A, Contreras-Reyes, E, Heredia, N, Encimas, A, Iannelli, S, Oliveros, V, Dávila, F, Collo, G, Giambiagi, L, Maksymowicz, A, Iglesia Llanos, MP, Turienzo, MM, Naipauer, M, Orts, D, Litvak, V, Álvarez, O and Arriagada, C), pp. 191222. Switzerland: Springer Earth System Sciences.Google Scholar
Navarrete, C, Gianni, G, Encinas, A, Marquez, M, Kamerbeek, Y, Valle, M and Folguera, A (2019) Triassic to middle Jurassic geodynamic evolution of southwestern Gondwana: from a large flat-slab to mantle plume suction in a rollback subduction setting. Earth-Science Reviews 194, 125–59.CrossRefGoogle Scholar
Nelson, DA and Cottle, JM (2018) The secular development of accretionary orogens: linking the Gondwana magmatic arc record of West Antarctica, Australia and South America. Gondwana Research 63, 1533.CrossRefGoogle Scholar
Nelson, DA and Cottle, JM (2019) Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–98.CrossRefGoogle Scholar
Oliveros, V, Vásquez, P, Creixel, C, Lucassen, F, Ducea, M, Ciocca, I, González, J, Espinoza, M, Salazar, E, Coloma, F and Kasemann, S (2020) Lithospheric evolution of the pre- and early Andean convergent margin, Chile. Gondwana Research 80, 202–27.CrossRefGoogle Scholar
Oriolo, S, Schulz, B, González, P, Bechis, F, Olaizola, E, Krause, J, Renda, E and Vizán, H (2019) The Late Paleozoic tectonometamorphic evolution of Patagonia revisited: insights from the pressure-temperature-deformation-time (P-T-D-t) path of the Gondwanide basement of the North Patagonian Cordillera (Argentina). Tectonics 38, 2378–400.CrossRefGoogle Scholar
Orts, D, Folguera, A, Giménez, M, Ruiz, F, Rojas Vera, E and Lince Klinger, F (2015). Cenozoic building and deformational processes in the North Patagonian Andes. Journal of Geodynamics 86, 2641.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW, De Luchi, ML, Rapalini, AE, Fanning, CM and Galindo, C (2014) The Gondwana connections of northern Patagonia. Journal of the Geological Society 171, 313–28.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW, Fanning, CM and Márquez, M (2006) Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76, 235–57.CrossRefGoogle Scholar
Pepper, MB, Gehrels, G, Pullen, A, Ibañez-Mejia, M, Ward, KM and Kapp, P (2016) Magmatic history and crustal genesis of South America: constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12, 1532–55.CrossRefGoogle Scholar
Poma, S, Zappettini, EO, Quenardelle, S, Santos, JO, Kouhharsky, M, Belousova, E and McNaughton, N 2014. Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwana magmatism in NW Argentina: petrogenesis and geodynamic implications. Andean Geology 41, 267362.CrossRefGoogle Scholar
Poole, G, Kemp, A, Hagemann, S, Fiorentini, M, Jeon, H, Williams, I, Zappettini, E and Rubinstein, N (2020) The petrogenesis of back-arc magmas, constrained by zircon O and Hf isotopes, in the Frontal Cordillera and Precordillera, Argentina. Contributions to Mineralogy and Petrology 175, 89. doi: 10.1007/s00410-020-01721-0.CrossRefGoogle Scholar
Ramírez de Arellano, C, Putlitz, B, Müntener, O and Ovtcharova, M (2012) High precision U/Pb zircon dating of the Chaltén plutonic complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes. Tectonics 31, TC4009.CrossRefGoogle Scholar
Ramos, VA (1984) Patagonia: ¿Un continente paleozoico a la deriva?. Actas IX Congreso Geológico Argentino 2, 311–25.Google Scholar
Ramos, VA (2008) Patagonia: a Palaeozoic continent adrift? Journal of South American Earth Sciences 26, 235–51.CrossRefGoogle Scholar
Ramos, VA and Folguera, A (2009) Andean flat subduction through time. In Ancient Orogens and Modern Analogues (eds Murphy, B, Keppie, J and Hynes, A), pp. 3154. Geological Society of London, Special Publication no. 327.Google Scholar
Ramos, VA and Kay, SM (1991) Triassic rifting and associated basalts in the Cuyo basin, central Argentina. In Andean Magmatism and Its Tectonic Setting (eds Harmon, R and Rapela, C), pp. 7991. United State of America: Geological Society of America, Special Paper 265.CrossRefGoogle Scholar
Ramos, VA, Lovecchio, JP, Naipauer, M and Pángaro, F (2020) The collision of Patagonia: geological facts and speculative interpretations. Ameghiniana 57, 464–79.CrossRefGoogle Scholar
Ramos, VA and Naipauer, M (2014). Patagonia: where does it come from? Journal of Iberian Geology 40, 367–79.CrossRefGoogle Scholar
Ramos, VA and Naipauer, M (2012) Patagonia: an allochthonous terrane accreted to the Western Gondwana and its contribution to the formation of the paleo-Andes in the late Paleozoic. In Geology of the Andean Cordillera and Its Foreland (eds Heredia Carballo, N, Colombo Piñol, F and García Sansegundo, J), pp. 1903–6. Spain: Geo-Temas 13.Google Scholar
Ramos, VA, Riccardi, A and Rolleri, EO (2004) Límites naturales del norte de la Patagonia. Revista de la Asociación Geológica Argentina 59, 785–6.Google Scholar
Rapalini, AE, López de Luchi, MG, Martínez Dopico, CI, Lince Klinger, F, Giménez, M and Martínez, P (2010). Did Patagonia collide with Gondwana in the Late Paleozoic? Some insights from a multidisciplinary study of magmatic units of the North Patagonian Massif. Geologica Acta 8, 349–71.Google Scholar
Rapalini, AE, López de Luchi, MG, Tohver, E and Cawood, PA (2013) The South American ancestry of the North Patagonian Massif: geochronological evidence for an autochthonous origin? Terra Nova 25, 337–42.CrossRefGoogle Scholar
Rapela, CW, Hervé, F, Pankhurst, R, Calderón, M, Fanning, C, Qezada, P, Poblete, F, Palape, C and Reyes, T (2021). The Devonian accretionary orogen of the North Patagonian Cordillera. Gondwana Research 96, 121.CrossRefGoogle Scholar
Rapela, CW and Pankhurst, R (2020) The continental crust of northeastern Patagonia. Ameghiniana 57, 480–98.CrossRefGoogle Scholar
Rocher, S, Vallecillo, G, Castro de Machuca, B and Alasino, P (2015) El Grupo Choiyoi (Pérmico temprano-medio) en la Cordillera Frontal de Calingasta, San Juan, Argentina: volcanismo de arco asociado a extensión. Revista Mexicana de Ciencias Geológicas 32, 415–32.Google Scholar
Rosenbaum, G, Gasparon, M, Lucente, FP, Pecerillo, A and Miller, MS (2008) Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics 27, 116.CrossRefGoogle Scholar
Sato, AM, Llambías, EJ, Basei, MAS and Castro, CE (2015) Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. Journal of South American Earth Sciences 63, 4869.CrossRefGoogle Scholar
Schellart, P (2020) Control of subduction zone age and size on flat slab subduction. Frontiers in Earth Science 8, 26.CrossRefGoogle Scholar
Schilling, M, Carlson, R, Tassara, A, Conceição, R, Bertotto, G, Vásquez, M, Muñoz, D, Jalowitzki, T, Gervasoni, F and Morata, D (2017) The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths. Precambian Research 294, 1532.CrossRefGoogle Scholar
Silvestro, J and Zubiri, M (2008) Convergencia oblicua: modelo estructural alternativo para la dorsal neuquina (39°S) – Neuquén. Revista de la Asociación Geológica Argentina 63, 4964.Google Scholar
Spalletti, LA and Limarino, CO (2017) The Choiyoi magmatism in southwestern Gondwana: implications for the end-Permian mass extinction – a review. Andean Geology 44, 328–38.CrossRefGoogle Scholar
Strazzere, L, Gregori, D and Distas, JA (2006) Genetic evolution of Permo-Triassic volcaniclastic sequences at Uspallata, Mendoza Precordillera, Argentina. Gondwana Research 9, 485–99.CrossRefGoogle Scholar
Sundell, K, Saylor, JE and Pecha, M (2019) Provenance and recycling of detrital zircons from Cenozoic Altiplano strata and the crustal evolution of western South America from combined U-Pb and Lu-Hf isotopic analysis. In Andean Tectonics (eds Horton, B and Folguera, A), pp. 363–97. Amsterdam: Elsevier.CrossRefGoogle Scholar
Taylor, SR and McLennan, SM (1985) The Continental Crust: its Composition and Evolution. pp. 312. Oxford: Blackwell.Google Scholar
Tunik, M, Folguera, A, Naipauer, M, Pimentel, M and Ramos, VA (2010) Early uplift and orogenic deformation in the Neuquen basin: constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489, 258–73.CrossRefGoogle Scholar
Varela, R, Gregori, DA, González, PD and Basei, MAS (2015) Caracterización geoquímica del magmatismo de arco devónico y carbonífero-pérmico en el noroeste de Patagonia, Argentina. Revista de la Asociación Geológica Argentina 72, 419–32.Google Scholar
Varela, R, Sato, K, González, PD, Sato, AM and Basei, MAS (2009) Geología y geocronología Rb-Sr de granitoides de Sierra Grande, provincia de Río Negro. Revista de la Asociación Geológica Argentina 64, 275–84.Google Scholar
Vizán, H, Prezzi, C, Geuna, S, Japas, M, Renda, E, Franzese, J and Van Zele, M (2017) Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions, and Gondwana tectonics. Geosphere 13, 113.CrossRefGoogle Scholar
Wedepohl, KH (1995) The compositions of the continental crust. Geochimica et Cosmochima Acta 59, 12171232.CrossRefGoogle Scholar
Yan, Z, Chen, L, Xiong, X, Wang, K, Xie, R and Hsu, H (2020) Observations and modeling of flat subduction and its geological effects. Science China – Earth Science 63, 1069.CrossRefGoogle Scholar
Young, A, Flament, N, Maloney, K, Williams, S, Matthews, K, Zahirovi, K and Müller, RD (2019) Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers 10, 9891013.CrossRefGoogle Scholar
Zhang, L, Shichao, L and Zhao, Q (2019) A review of research on adakites. International Geology Review 63, 4764.CrossRefGoogle Scholar
Supplementary material: File

Falco et al. supplementary material

Falco et al. supplementary material 1

Download Falco et al. supplementary material(File)
File 88.3 KB
Supplementary material: File

Falco et al. supplementary material

Falco et al. supplementary material 2

Download Falco et al. supplementary material(File)
File 2.5 MB