Skip to main content
×
Home

The origin of the ultramafic rocks of the Tulu Dimtu Belt, western Ethiopia – do they represent remnants of the Mozambique Ocean?

  • MORGAN L. BLADES (a1), JOHN FODEN (a1), ALAN S. COLLINS (a1), TADESSE ALEMU (a2) and GIRMA WOLDETINSAE (a3)...
Abstract
Abstract

The East African Orogen contains a series of high-strain zones that formed as Gondwana amalgamated. The Tulu Dimtu shear belt is one of these N–S structures within the Barka–Tulu Dimtu zone in western Ethiopia, and contains ultramafic bodies of equivocal origin. Identifying the petrogenetic origin of these enigmatic rocks provides evidence for the geodynamic significance of these shear zones. Owing to their altered state, these ultramafic rocks’ well-preserved chrome spinels provide the only reliable evidence for their source and tectonic affiliation. Chrome spinels have high Cr2O3 (30.04–68.76 wt %), while recalculated Fe2O3 (< 2 %) and TiO2 (0.01–0.51 %) values are low. The Cr# (molar Cr3+/Cr3+ + Al2+) and Mg# (Mg2+/Mg2+ + Fe2+) have averages of 0.88 and 0.22, respectively. Based on olivine–spinel equilibria, the calculated fO2 values (FMQ +3.03) for the dunites reveal a highly oxidized environment. This spinel chemistry (high Cr# > 0.6 and low Ti) supports a supra-subduction origin, with an oxidized mantle source more refractory than depleted MORB mantle (DMM). These spinel compositions indicate that some ultramafic bodies in western Ethiopia, including those from Daleti, Tulu and Dimtu, are serpentinized peridotites emplaced as obducted ophiolite complexes. By contrast, the ultramafic rocks from the Yubdo locality have a different spinel chemistry, with strong affiliation with igneous spinels formed in Alaskan-style mafic intrusions. These collective results suggest that regardless of their origin as supra-subduction ophiolites or as Alaskan-type intrusions, these spinels were formed on a convergent-subduction margin.

Copyright
Corresponding author
Author for correspondence: morgan.blades@adelaide.edu.au
References
Hide All
Abdel-Karim A.-A. M., Ali S., Helmy H. M. & El-Shafei S. A. 2016. A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: evidence from mineral chemistry and geochemistry of ultramafites. Lithos 263, 5265.
Abdelsalam M. & Stern R. 1996. Sutures and shear zones in the Arabian-Nubian Shield. Journal of African Earth Sciences 23, 289310.
Abraham A. 1989. Tectonic History of the Pan-African Low-Grade Belt of Western Ethiopia. Addis Ababa: Ethiopian Institute of Geological Surveys.
Ahmed A. H. 2013. Highly depleted harzburgite–dunite–chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: a possible recycled upper mantle lithosphere. Precambrian Research 233, 173–92.
Ahmed A. & Arai S. 2002. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology 143, 263–78.
Aldanmaz E., Schmidt M., Gourgaud A. & Meisel T. 2009. Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113, 691708.
Alemu T. 2004. Structural evolution of the Pan-African Tulu Dimtu Belt, western Ethiopia. In Proceedings of the 4th Ethiopian Geoscience and Mineral Engineering Association (EGMEA) (ed. Asrat A.), pp. 188–94.
Alemu T. & Abebe T. 2000. Geology of the Gimbi Area. Addis Ababa: Geological Survey of Ethiopia.
Alemu T. & Abebe T. 2007. Geology and tectonic evolution of the Pan-African Tulu Dimtu Belt, Western Ethiopia. Online Journal of Earth Sciences 1, 2442.
Allen A. & Tadesse G. 2003. Geological setting and tectonic subdivision of the Neoproterozoic orogenic belt of Tuludimtu, western Ethiopia. Journal of African Earth Sciences 36, 329–43.
Arai S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56, 173–84.
Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology 113, 191204.
Arai S. & Ishimaru S. 2008. Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. Journal of Petrology 49, 665–95.
Arai S., Kida M., Abe N. & Yurimoto H. 2001. Petrology of peridotite xenoliths in alkali basalt (11 Ma) from Boun, Korea: an insight into the upper mantle beneath the East Asian continental margin. Journal of Mineralogical and Petrological Sciences 96, 8999.
Arai S. & Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos 264, 277–95.
Arai S., Okamura H., Kadoshima K., Tanaka C., Suzuki K. & Ishimaru S. 2011. Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Island Arc 20, 125–37.
Arai S., Shimizu Y., Ismail S. & Ahmed A. 2006. Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineralogical Magazine 70, 499508.
Arai S., Takada S., Michibayashi K. & Kida M. 2004. Petrology of peridotite xenoliths from Iraya volcano, Philippines, and its implication for dynamic mantle-wedge processes. Journal of Petrology 45, 369–89.
Arai S. & Takahashi N. 1987. A kaersutite-bearing dunite xenolith from Ichinomegata, northeastern Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists 82, 85–9.
Augé T. 1987. Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Mineralium Deposita 22, 110.
Ayalew T., Bell K., Moore J. M. & Parrish R. R. 1990. U–Pb and Rb–Sr geochronology of the western Ethiopian shield. Geological Society of America Bulletin 102, 1309–16.
Ayalew T. & Peccerillo A. 1998. Petrology and geochemistry of the Gore-Gambella plutonic rocks: implications for magma genesis and the tectonic setting of the Pan-African Orogenic Belt of western Ethiopia. Journal of African Earth Sciences 27, 397416.
Azer M. K. & Stern R. J. 2007. Neoproterozoic (835–720 Ma) serpentinites in the Eastern Desert, Egypt: fragments of forearc mantle. The Journal of Geology 115, 457–72.
Bakor A. R., Gass I. G. & Neary C. R. 1976. Jabal al Wask NW Saudi Arabia: an Eocambrian back arc ophiolite. Earth and Planetary Sciences 30, 19.
Ballhaus C., Berry R. & Green D. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology 107, 2740.
Ballhaus C., Berry R. & Green D. 1994. High-pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology 118, 109–09.
Barnes S. J. 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology 41, 387409.
Barnes S. J. & Roeder P. L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42, 2279–302.
Beccaluva L. & Serri G. 1988. Boninitic and low-Ti subduction-related lavas from intraoceanic arc-backarc systems and low-Ti ophiolites: a reappraisal of their petrogenesis and original tectonic setting. Tectonophysics 146, 291315.
Belete K., Mogessie A., Hoinkes G. & Ettinger K. 2000. Platinum group minerals and chrome spinels in the Yubdo ultramafic rocks, western Ethiopia. Journal of African Earth Sciences 30 (4a) Special Abstract Issue, 18th Colloquium of African Geology, 10.
Berhe S. M. 1990. Ophiolites in Northeast and East Africa: implications for Proterozoic crustal growth. Journal of the Geological Society, London 147, 4157.
Blades M. L., Collins A. S., Foden J., Payne J. L., Xu X., Alemu T., Woldetinsae G., Clark C. & Taylor R. J. 2015. Age and hafnium isotopic evolution of the Didesa and Kemashi Domains, western Ethiopia. Precambrian Research 270, 267–84.
Bodinier J.-L. & Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In Treatise on Geochemistry 2nd Ed., Vol. 3 (ed. Carlson R. W.), pp. 103–70. Amsterdam: Elsevier.
Bonatti E. & Michael P. J. 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters 91, 297311.
Braathen A., Grenne T., Selassie M. & Worku T. 2001. Juxtaposition of Neoproterozoic units along the Baruda–Tulu Dimtu shear-belt in the East African Orogen of western Ethiopia. Precambrian Research 107, 215–34.
Chashchukhin I., Votyakov S., Pushkarev E., Anikina E., Mironov A. & Uimin S. 2002. Oxithermobarometry of ultramafic rocks from the Ural Platinum Belt. Geochemistry International 40, 762–78.
Chen B., Suzuki K., Tian W., Jahn B. & Ireland T. 2009. Geochemistry and Os–Nd–Sr isotopes of the Gaositai Alaskan-type ultramafic complex from the northern North China craton: implications for mantle–crust interaction. Contributions to Mineralogy and Petrology 158, 683702.
Collins A. & Pisarevsky S. 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth-Science Reviews 71, 229–70.
deBari S. M. & Coleman R. G. 1989. Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research 94, 4373–91.
de Wit M. & Aguma A. 1977. Geology of the Ultramafic and Associated Rocks of Tulu Dimtu, Welega. Ethiopian Institute of Geological Surveys Report, 26.
Dick H. J. B. 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Magmatism in the Ocean Basins 42, 71105.
Dick H. J. & Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.
Dick H. J. & Natland J. H. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 147 (eds Mével C., Gillis K. M., Allan J. F. & Meyer P. S.), pp. 103–34. College Station, Texas.
Dick H. J. B. & Sinton J. M. 1979. Compositional layering in alpine peridotites: evidence for pressure solution creep in the mantle. The Journal of Geology 87, 403–16.
Dilek Y. & Flower M. F. 2003. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. In Ophiolites in Earth History (eds Dilek Y. & Robinson P. T.), pp. 4368. Geological Society of London, Special Publication no. 218.
Dilek Y. & Furnes H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387411.
Dilek Y. & Furnes H. 2014. Ophiolites and their origins. Elements 10, 93100.
El Bahariya G. & Abd El-Wahed M. 2003. Petrology, mineral chemistry and tectonic evolution of the northern part of Wadi Hafafit area, Eastern Desert, Egypt. In The Third International Conference on the Geology of Africa, Assiut University, Assiut (7–9 December 2003), Egypt, pp. 201–31.
El-Rahman Y. A., Helmy H. M., Shibata T., Yoshikawa M., Arai S. & Tamura A. 2012. Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: implications for the pluton origin and evolution of subduction-related magma. Lithos 155, 410–25.
Escayola M., Garuti G., Zaccarini F., Proenza J. A., Bédard J. H. & Van Staal C. 2011. Chromitite and platinum-group-element mineralization at middle Arm Brook, central Advocate ophiolite complex, Baie Verte peninsula, Newfoundland, Canada. The Canadian Mineralogist 49, 1523–47.
Evans K., Elburg M. & Kamenetsky V. 2012. Oxidation state of subarc mantle. Geology 40, 783–6.
Farahat E. S. 2008. Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications. Chemie der Erde-Geochemistry 68, 193205.
Farahat E., El Mahalawi M., Hoinkes G. & Abdel Aal A. 2004. Continental back-arc basin origin of some ophiolites from the Eastern Desert of Egypt. Mineralogy and Petrology 82, 81104.
Farahat E. & Helmy H. 2006. Abu Hamamid Neoproterozoic Alaskan-type complex, south Eastern Desert, Egypt. Journal of African Earth Sciences 45, 187–97.
Findlay D. 1969. Origin of the Tulameen ultramafic-gabbro complex, southern British Columbia. Canadian Journal of Earth Sciences 6, 399425.
Fritz H., Abdelsalam M., Ali K. A., Bingen B., Collins A. S., Fowler A. R., Ghebreab W., Hauzenberger C. A., Johnson P. R., Kusky T. M., Macey P., Muhongo S., Stern R. J. & Viola G. 2013. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences 86, 65106.
Frost B. R. 1975. Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. Journal of Petrology 16, 272313.
Frost B. R. & Beard J. S. 2007. On silica activity and serpentinization. Journal of Petrology 48, 1351–68.
Garuti G., Pushkarev E. V. & Zaccarini F. 2002. Composition and paragenesis of Pt alloys from chromitites of the Uralian–Alaskan-type Kytlym and Uktus complexes, northern and central Urals, Russia. The Canadian Mineralogist 40, 357–76.
Garuti G., Pushkarev E. V., Zaccarini F., Cabella R. & Anikina E. 2003. Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia). Mineralium Deposita 38, 312–26.
Grenne T., Pedersen R., Bjerkgård T., Braathen A., Selassie M. & Worku T. 2003. Neoproterozoic evolution of Western Ethiopia: igneous geochemistry, isotope systematics and U–Pb ages. Geological Magazine 140, 373–95.
Helmy H. & El Mahallawi M. 2003. Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes. Mineralogy and Petrology 77, 85108.
Helmy H. M., El-Rahman Y. M. A., Yoshikawa M., Shibata T., Arai S., Tamura A. & Kagami H. 2014. Petrology and Sm–Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): insights into deep levels of Neoproterozoic island arcs. Lithos 198, 263–80.
Helmy H. M. & Mogessie A. 2001. Gabbro Akarem, Eastern Desert, Egypt: Cu–Ni–PGE mineralization in a concentrically zoned mafic–ultramafic complex. Mineralium Deposita 36, 5871.
Helmy H. M., Yoshikawa M., Shibata T., Arai S. & Kagami H. 2015. Sm–Nd and Rb–Sr isotope geochemistry and petrology of Abu Hamamid intrusion, Eastern Desert, Egypt: an Alaskan-type complex in a backarc setting. Precambrian Research 258, 234–46.
Himmelberg G. R. & Loney R. A. 1995. Characteristics and Petrogenesis of Alaskan-Type Ultramafic-Mafic Intrusions, Southeastern Alaska. US Geological Survey Professional Paper 1564.
Himmelberg G. R., Loney R. A. & Craig J. T. 1986. Petrogenesis of the Ultramafic Complex at the Blashke Islands, Southeastern Alaska. US Geological Survey Bulletin 1662.
Hussein I., Kröner A. & Reischmann T. 2004. The Wadi Onib mafic-ultramafic complex: a Neoproterozoic supra-subduction zone ophiolite in the northern Red Sea hills of the Sudan. Developments in Precambrian Geology 13, 163206.
Irvine T. 1965. Chromian spinel as a petrogenetic indicator: Part 1. Theory. Canadian Journal of Earth Sciences 2, 648–72.
Irvine T. 1967. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Canadian Journal of Earth Sciences 4, 71103.
Irvine T. N. 1974. Petrology of the Duke Island ultramafic complex southeastern Alaska. Geological Society of America Memoirs 138, 1244.
Ishii K. 1992. Partitioning of non-coaxiality in deforming layered rock masses. Tectonophysics 210, 3343.
Iyer K., Austrheim H., John T. & Jamtveit B. 2008. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway. Chemical Geology 249, 6690.
Jaques A. & Green D. 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287310.
Johnson P., Andresen A., Collins A. S., Fowler A., Fritz H., Ghebreab W., Kusky T. & Stern R. 2011. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences 61, 167232.
Johnson T. E., Ayalew T., Mogessie A., Kruger F. J. & Poujol M. 2004. Constraints on the tectonometamorphic evolution of the Western Ethiopian Shield. Precambrian Research 133, 305–27.
Kamenetsky V. S., Crawford A. J. & Meffre S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–71.
Kamenetsky V. S., Sobolev A. V., Eggins S., Crawford A. J. & Arculus R. 2002. Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chemical Geology 183, 287303.
Kazmin V. 1976. Ophiolites in the Ethiopian Basement. Ethiopian Institute of Geological Surveys, Note 35, 16 pp.
Kebede T., Kloetzli U. & Koeberl C. 2001. U/Pb and Pb/Pb zircon ages from granitoid rocks of Wallagga area: constraints on magmatic and tectonic evolution of Precambrian rocks of western Ethiopia. Mineralogy and Petrology 71, 251–71.
Kebede T., Koeberl C. & Koller F. 1999. Geology, geochemistry and petrogenesis of intrusive rocks of the Wallagga area, western Ethiopia. Journal of African Earth Sciences 29, 715–34.
Kebede T., Koeberl C. & Koller F. 2001. Magmatic evolution of the Suqii-Wagga garnet-bearing two-mica granite, Wallagga area, western Ethiopia. Journal of African Earth Sciences 32, 193221.
Kelemen P. B., Whitehead J., Aharonov E. & Jordahl K. A. 1995. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysical Research: Solid Earth 100 (B1), 475–96.
Khalil A. & Azer M. 2007. Supra-subduction affinity in the Neoproterozoic serpentinites in the Eastern Desert, Egypt: evidence from mineral composition. Journal of African Earth Sciences 49, 136–52.
Khedr M. Z. & Arai S. 2013. Origin of Neoproterozoic ophiolitic peridotites in south Eastern Desert, Egypt, constrained from primary mantle mineral chemistry. Mineralogy and Petrology 107, 807–28.
Khedr M. Z. & Arai S. 2016. Petrology of a Neoproterozoic Alaskan-type complex from the Eastern Desert of Egypt: implications for mantle heterogeneity. Lithos 263, 1532.
Khudeir A. 1995. Chromian spinel-silicate chemistry in peridotite and orthopyroxenite relicts from ophiolitic serpentinites, Eastern Desert, Egypt. Bulletin of the Faculty of Science, Assiut University 24, 221–61.
Kimball K. L. 1990. Effects of hydrothermal alteration on the compositions of chromian spinels. Contributions to Mineralogy and Petrology 105, 337–46.
Krause J., Brügmann G. E. & Pushkarev E. V. 2007. Accessory and rock forming minerals monitoring the evolution of zoned mafic–ultramafic complexes in the Central Ural Mountains. Lithos 95, 1942.
Leblanc M. & Nicolas A. 1992. Ophiolitic chromitites. International Geology Review 34, 653–86.
Le Mée L., Girardeau J. & Monnier C. 2004. Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge. Nature 432 (7014), 167–72.
Meert J. G. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 140.
Meert J. G. & Lieberman B. S. 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research 14, 521.
Mellini M., Rumori C. & Viti C. 2005. Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles. Contributions to Mineralogy and Petrology 149, 266–75.
Merdith A. S., Collins A. S., Williams S. E., Pisarevsky S., Foden J. F., Archibald D. A., Blades M. L., Alessio B. L., Armistead S., Plavsa D., Clark C. & D.R.M. 2017. A full plate global reconstruction of the Neoproterozoic. Gondwana Research 50, 84134.
Metcalf R. V. & Shervais J. W. 2008. Suprasubduction-zone ophiolites: is there really an ophiolite conundrum? In Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson (eds Wright J. E. & Shervais J. W.), pp. 191222. Geological Society of America Special Papers no. 438.
Mogessie A., Belete K. & Hoinkes G. 2000. Yubdo-Tulu Dimtu mafic-ultramafic belt, Alaskan-type intrusions in western Ethiopia: its implication to the Arabian-Nubian Shield and tectonics of the Mozambique Belt. Journal of African Earth Sciences 30, 62.
Molly E. 1959. Platinum deposits of Ethiopia. Economic Geology 54, 467–77.
Niu Y. & Hekinian R. 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385 (6614), 326.
Pallister J. S., Stacey J. S., Fischer L. B. & Premo W. R. 1988. Precambrian ophiolites of Arabia: geologic settings, U–Pb geochronology, Pb-isotope characteristics, and implications for continental accretion. Precambrian Research 38, 154.
Parkinson I. J. & Arculus R. J. 1999. The redox state of subduction zones: insights from arc-peridotites. Chemical Geology 160, 409–23.
Parkinson I. J. & Pearce J. A. 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577–618.
Pearce J. A., Barker P., Edwards S., Parkinson I. & Leat P. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology 139, 3653.
Pearce J. A., Lippard S. & Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins (eds Kokelaar B. P & Howells M. F.), pp. 7794. Geological Society of London, Special Publication no. 16.
Pinsent R. & Hirst D. 1977. The metamorphism of the Blue River ultramafic body, Cassiar, British Columbia, Canada. Journal of Petrology 18, 567–94.
Proenza J., Gervilla F., Melgarejo J. & Bodinier J.-L. 1999. Al-and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba); consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology 94, 547–66.
Proenza J. A., Zaccarini F., Lewis J. F., Longo F. & Garuti G. 2007. Chromian spinel composition and the platinum-group minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. The Canadian Mineralogist 45, 631–48.
Rahman E. A., Harms U., Schandelmeier H., Franz G., Darbyshire D., Horn P. & Muller–Sohnius D. 1990. A new ophiolite occurrence in NW Sudan; constraints on late Proterozoic tectonism. Terra Nova 2, 363–76.
Roeder P. L. & Campbell I. H. 1985. The effect of postcumulus reactions on composition of chrome-spinels from the Jimberlana intrusion. Journal of Petrology 26, 763–86.
Rollinson H. 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions to Mineralogy and Petrology 156, 273–88.
Rollinson H. & Adetunji J. 2015 a. Chromite in the mantle section of the Oman Ophiolite: implications for the tectonic evolution of the Oman ophiolite. Acta Geologica Sinica (English Edition) 89 (s2), 73–6.
Rollinson H. & Adetunji J. 2015 b. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: a review. Gondwana Research 27, 543–54.
Scowen P. A. H., Roeder P. L. & Helz R. T. 1991. Reequilibration of chromite within Kilauea Iki lava lake, Hawaii. Contributions to Mineralogy and Petrology 107, 820.
Shervais J. W. 2001. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems 2, 1010. doi: 10.1029/2000GC000080.
Snoke A. W., Quick J. E. & Bowman H. R. 1981. Bear Mountain Igneous Complex, Klamath Mountains, California: an ultrabasic to silicic calc-alkaline suite. Journal of Petrology 22, 501–52.
Sobolev A. t. & Batanova V. 1995. Mantle lherzolites of the Troodos ophiolite complex, Cyprus-clinopyroxene geochemistry. Petrology 3, 440–8.
Springer R. K. 1974. Contact metamorphosed ultramafic rocks in the western Sierra Nevada foothills, California. Journal of Petrology 15, 160–95.
Stern R. J. 1994. Arc-assembly and continental collision in the Neoproterozoic African Orogen: implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences 22, 319–51.
Stern R. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33, 557–60.
Stern R. J., Johnson P. R., Kröner A. & Yibas B. 2004. Neoproterozoic ophiolites of the Arabian-Nubian shield. Developments in Precambrian Geology 13, 95128.
Tadesse G. & Allen A. 2004. Geochemistry of metavolcanics from the Neoproterozoic Tuludimtu orogenic belt, Western Ethiopia. Journal of African Earth Sciences 39, 177–85.
Tadesse G. & Allen A. 2005. Geology and geochemistry of the Neoproterozoic Tuludimtu Ophiolite suite, western Ethiopia. Journal of African Earth Sciences 41, 192211.
Takahashi E. & Ito E. 1987. Mineralogy of mantle peridotite along a model geotherm up to 700 km depth. In High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto (eds Manghnani M. H. & Syono Y.), pp. 427–43. American Geophysical Union, Washington, DC, USA.
Tamura A. & Arai S. 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90, 4356.
Taylor H. P. Jr & Noble J. A. 1969. Origin of magnetite in the zoned ultramafic complexes of southeastern Alaska. Magmatic Ore Deposits 4, 209–30.
Tefera M. 1991. Geology of the Kurmuk and Asosa Area. Ethiopian Institutes of Geological Surveys Draft Report 109.
Uysal I., Tarkian M., Sadiklar M. B., Zaccarini F., Meisel T., Garuti G. & Heidrich S. 2009. Petrology of Al-and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contributions to Mineralogy and Petrology 158, 659–74.
Whattam S. A. & Stern R. J. 2011. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology 162, 1031–45.
Woldemichael B. W. & Kimura J.-I. 2008. Petrogenesis of the Neoproterozoic Bikilal-Ghimbi gabbro, Western Ethiopia. Journal of Mineralogical and Petrological Sciences 103, 2346.
Woldemichael B. W., Kimura J.-I., Dunkley D. J., Tani K. & Ohira H. 2010. SHRIMP U–Pb zircon geochronology and Sr–Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia: a record of passive margin magmatism at 855 Ma? International Journal of Earth Sciences 99, 1773–90.
Woldie K. & Nigussie T. 1996. Geological Map of Ethiopia. Addis Ababa: Geological Survey of Ethiopia.
Yamamoto K., Masutani Y., Nakamura N. & Ishii T. 1992. REE characteristics of mafic rocks from a fore-arc seamount in the Izu-Ogasawara region, western Pacific. Geochemical Journal 26, 411–23.
Zhou M.-F. & Bai W.-J. 1992. Chromite deposits in China and their origin. Mineralium Deposita 27, 192–9.
Zhou M.-F. & Robinson P. T. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology 92, 259–62.
Zhou M.-F., Robinson P. & Bai W. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita 29, 98101.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Blades et al supplementary material
Blades et al supplementary material 1

 Word (210 KB)
210 KB

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 101 *
Loading metrics...

* Views captured on Cambridge Core between 30th October 2017 - 23rd November 2017. This data will be updated every 24 hours.