Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T15:38:22.269Z Has data issue: false hasContentIssue false

Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework

Published online by Cambridge University Press:  12 March 2018

WENCHAO CAO*
Affiliation:
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
SIMON WILLIAMS
Affiliation:
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
NICOLAS FLAMENT
Affiliation:
School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
SABIN ZAHIROVIC
Affiliation:
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
CHRISTOPHER SCOTESE
Affiliation:
Department of Earth & Planetary Sciences, Northwestern University, Evanston, IL 60208, USA
R. DIETMAR MÜLLER
Affiliation:
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia Sydney Informatics Hub, The University of Sydney, Sydney, NSW 2006, Australia
*
Author for correspondence: wenchao.cao@sydney.edu.au

Abstract

Whether the latitudinal distribution of climate-sensitive lithologies is stable through greenhouse and icehouse regimes remains unclear. Previous studies suggest that the palaeolatitudinal distribution of palaeoclimate indicators, including coals, evaporites, reefs and carbonates, has remained broadly similar since the Permian period, leading to the conclusion that atmospheric and oceanic circulation control their distribution rather than the latitudinal temperature gradient. Here we revisit a global-scale compilation of lithologic indicators of climate, including coals, evaporites and glacial deposits, back to the Devonian period. We test the sensitivity of their latitudinal distributions to the uneven distribution of continental areas through time and to global tectonic models, correct the latitudinal distributions of lithologies for sampling- and continental area-bias, and use statistical methods to fit these distributions with probability density functions and estimate their high-density latitudinal ranges with 50% and 95% confidence intervals. The results suggest that the palaeolatitudinal distributions of lithologies have changed through deep geological time, notably a pronounced poleward shift in the distribution of coals at the beginning of the Permian. The distribution of evaporites indicates a clearly bimodal distribution over the past ~400 Ma, except for Early Devonian, Early Carboniferous, the earliest Permian and Middle and Late Jurassic times. We discuss how the patterns indicated by these lithologies change through time in response to plate motion, orography, evolution and greenhouse/icehouse conditions. This study highlights that combining tectonic reconstructions with a comprehensive lithologic database and novel data analysis approaches provide insights into the nature and causes of shifting climatic zones through deep time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becq-Giraudon, J. F., Montenat, V. & Van Den Driessche, J. 1996. Hercynian high-altitude phenomena in the French Massif Central: tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 227–40.Google Scholar
Berner, R. A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. New York: Oxford University Press, 150 pp.10.1093/oso/9780195173338.001.0001Google Scholar
Blakey, R. C. 2008. Gondwana paleogeography from assembly to breakup – A 500 m.y. odyssey. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C.R., Frank, T.D. & Isbell, J.L.), pp. 128. Geological Society of America Special Paper no. 441.Google Scholar
Boucot, A. J., Chen, X. & Scotese, C. R. 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM, Concepts in Sedimentology and Paleontology vol. 11, 478 pp.Google Scholar
Boucot, A. J. & Gray, J. 2001. A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Earth-Science Reviews 56 (1–4), 1159.Google Scholar
Brandley, R. T. & Krause, F. F. 1993a. Carbonate and siliciclastic deposition on a wave swept, cold-water, low-latitude ramp: Lower Carboniferous Mount Head Formation, southwestern Alberta, Canada. Canadian Society of Petroleum Geologists, Annual Convention, Program and Abstracts, Carboniferous to Jurassic Pangea, 35 pp.Google Scholar
Brandley, R. T. & Krause, F. F. 1993b. Thinolite-type pseudomorphs of ikaite: cold water indicators in the Mt. Head (Early Carboniferous–Visean), Rocky Mountains, Canada. Canadian Society of Petroleum Geologists, Annual Convention, Program and Abstracts, Carboniferous to Jurassic Pangea, 34 pp.Google Scholar
Brandley, R. T. & Krause, F. F. 1994. Thinolite-type pseudomorphs after ikaite: indicators of cold water on the subequatorial western margin of Lower Carboniferous North America. In Pangea: Global Environments and Resources (eds Embry, V., Beauchamp, B. & Glass, D.J.), pp. 333–44. Canadian Society of Petroleum Geologists Memoir no. 17.Google Scholar
Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J. & Müller, R. D. 2017. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–39.Google Scholar
Cecil, C. B. 1990. Palaeoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18, 533–6.Google Scholar
Cecil, C. B., Dulong, F. T., West, R. R., Stamm, R., Wardlaw, B. & Edgar, N. T. 2003. Climate controls on the stratigraphy of a middle Pennsylvanian cyclothem in North America. In Climate Controls on Stratigraphy (eds Cecil, C. B. & Edgar, T. N.), pp. 151–80. Society of Economic Paleontologists and Mineralogists Special Publication no. 77.Google Scholar
Chaudhuri, P. & Marron, J. S. 1999. SiZer for exploration of structure in curves. Journal of the American Statistical Association 94 (447), 807–23.Google Scholar
Cleveland, W. S. & Devlin, S. J. 1988. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596610.Google Scholar
Craggs, H. J., Valdes, P. J. & Widdowson, M. 2011. Climate model predictions for the latest Cretaceous: an evaluation using climatically sensitive sediments as proxy indicators. Palaeogeography, Palaeoclimatology, Palaeoecology 315–316, 1223.Google Scholar
Diessel, C. F. K. 1992. Coal-Bearing Depositional Systems. Berlin: Springer-Verlag, 72 pp.Google Scholar
Domeier, M. & Torsvik, T. H. 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5 (3), 303–50.Google Scholar
Evans, D. A. D. 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444 (7115), 51–5.Google Scholar
Foster, G. L., Royer, D. L. & Lunt, D. J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8, 14845. doi: 10.1038/ncomms14845.Google Scholar
Frakes, L. A., Francis, J. E. & Syktus, J. I. 1992. Climate Modes of the Phanerozoic. Cambridge: Cambridge University Press.10.1017/CBO9780511628948Google Scholar
Gibbs, M. T., Rees, P. M., Kutzbach, J. E., Ziegler, A. M., Behling, P. J. & Rowley, D. B. 2002. Simulations of Permian climate and comparisons with climate-sensitive sediments. The Journal of Geology 110, 3355.Google Scholar
Godderis, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G., Macouin, M. & Regard, V. 2017. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience 10, 382–6.Google Scholar
Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 297307.Google Scholar
Golonka, J., Krobicki, M., Pajak, J., Giang, N. V. & Zuchiewicz, W. 2006. Global Plate Tectonics and Paleogeography of Southeast Asia. Kraków: Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 128 pp.Google Scholar
Gordon, W. A. 1975. Distribution by latitude of Phanerozoic evaporite deposits. The Journal of Geology 83 (6), 671–84.Google Scholar
Hallam, A. 1985. A review of Mesozoic climates. Journal of the Geological Society 142 (8), 433–45.Google Scholar
Hay, W. W. 2016. Experimenting on a Small Planet: A History of Scientific Discoveries, a Future of Climate Change and Global Warming, 2nd edn. New York: Springer, 819 pp..Google Scholar
Horton, D. E., Poulsen, C. J. & Pollard, D. 2010. Influence of high-latitude vegetation feedbacks on late Paleozoic glacial cycles. Nature Geoscience 3, 572–7.Google Scholar
Hunt, B. G. 1982. The impact of large variations of the Earth's obliquity on the climate. Journal of the Meteorological Society of Japan 60, 309–18.Google Scholar
Hyndman, R. J. 1996. Computing and graphing highest density. The American Statistician 50 (2), 120–6.Google Scholar
Jenkins, G. S. 2000. Global climate model high-obliquity solutions to the ancient climate puzzles of the Faint Young Sun Paradox and low-altitude Proterozoic Glaciation. Journal of Geophysical Research 105, 7357–70.Google Scholar
Jenkins, G. S. 2001. High-obliquity simulations for the Archean Earth: implications for climatic conditions on early Mars. Journal of Geophysical Research 106, 32903–13.10.1029/2000JE001427Google Scholar
Kump, L. R. & Arthur, M. A. 1997. Global chemical erosion during the Cenozoic: weatherability balances the budgets. In Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.), pp. 399426. New York: Plenum Press.Google Scholar
Kump, L. R., Arthur, M. A., Patzkowsky, M. E., Gibbs, M. T., Pinkus, D. S. & Sheehan, P. M. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 173–87.Google Scholar
Lowry, D. P., Poulsen, C. J., Horton, D. E., Torsvik, T. H. & Pollard, D. 2014. Thresholds for Paleozoic ice sheet initiation. Geology 42, 627–30.Google Scholar
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M. & Müller, R. D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146, 226–50.Google Scholar
McCabe, P. J. & Parrish, J. T. 1992. Tectonic and climatic controls on the distribution and quality of Cretaceous coals. In Controls on the Distribution and Quality of Cretaceous Coals. (eds McCabe, P. J. & Parrish, J. T.), pp. 115. Geological Society of America Special Paper no. 267.Google Scholar
Miller, K. B., McCahon, T. J. & West, R. R. 1996. Lower Permian (Wolfcampian) palaeosol-bearing cycles of the U.S. Midcontinent: evidence of climatic cyclicity. Journal of Sedimentary Research 66, 7184.Google Scholar
Miller, K. B. & West, R. R. 1993. A reevaluaation of Wolfcampian cyclothems in northeastern Kansas: significance of subaerial exposure and flooding surfaces. Kansas Geological Survey Bulletin 235, 126.Google Scholar
Molnar, P. & England, P. 1990. Late Cenozoic uplift of mountain ranges and global climatic change: chicken or egg? Nature 346, 2934.Google Scholar
Montañez, I. P., McElwain, J. C., Poulsen, C. J., White, J. D., DiMichele, W. A., Wilson, J. P., Griggs, G. & Hren, M. T. 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nature Geoscience 9, 824–8.Google Scholar
Montañez, I. P. & Poulsen, C. J. 2013. The Late Paleozoic Ice Age: an evolving paradigm. Annual Review of Earth and Planetary Sciences 41 (1), 629–56.Google Scholar
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R. & Isbell, J. L. 2007. CO2-forced climate and vegetation instability during Late Palaeozoic deglaciation. Science 315, 8791.Google Scholar
Müller, R. D., Royer, J. Y. & Lawver, L. A. 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21 (3), 275–8.Google Scholar
Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-moore, N., Bower, D. J. & Cannon, J. S. 2016. Ocean basin evolution and global-scale reorganization events since Pangea breakup. Annual Review of Earth and Planetary Science Letters 44, 107–38.Google Scholar
Nelsen, M. P., DiMichele, W. A., Peters, S. E. & Boyce, C. K. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences 113 (9), 2442–7.Google Scholar
Parrish, J. T. 1993. Climate of the supercontinent Pangaea. The Journal of Geology 101, 215–33.Google Scholar
Parrish, J. T., Ziegler, A. M. & Scotese, C. R. 1982. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 40 (1–3), 3166.Google Scholar
Pearson, P. N. & Palmer, M.R. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–9.Google Scholar
Perlmutter, M. A. & Matthews, M. D. 1989. Global cyclostratigraphy – a model. In Quantitative Dynamic Stratigraphy (ed. Cross, T. A.), pp. 223–60. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
Perlmutter, M. A. & Plotnick, R. E. 2003. Hemispheric asymmetry of the marine stratigraphic record: conceptual proof of a unipolar ice cap. In Climate Controls on Stratigraphy (eds Cecil, C. B. & Edgar, T. N.),. Society of Economic Paleontologists and Mineralogists Special Publication, vol. 77, pp. 5166.Google Scholar
Peyser, C. E. & Poulsen, C. J. 2008. Controls on Permo-Carboniferous precipitation over tropical Pangaea: a GCM sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology 268 (3–4), 181–92.Google Scholar
Poulsen, C. J., Pollard, D., Montañez, I. P. & Rowley, D. 2007. Late Palaeozoic tropical climate response to Gondwana deglaciation. Geology 35, 771–4.Google Scholar
Price, G. D., Sellwood, B. W. & Valdes, P. J. 1995. Sedimentological evalaution of general circulation model calculations for the ‘greenhouse’ Earth: Cretaceous and Jurrassic case studies. Sedimentary Geology 100, 159–80.Google Scholar
Rees, P. M., Ziegler, A. M., Gibbs, M. T., Kutzbach, J. E., Behling, P. J. & Rowley, D. B. 2002. Permian phytogeographic patterns and climate data/model comparisons. The Journal of Geology 110, 131.Google Scholar
Ronov, A., Khain, V. & Balukhovsky, A. 1989. Atlas of Lithological–Paleogeographical Maps of the World, Mesozoic and Cenozoic of Continents and Oceans. Leningrad: USSR Academy of Sciences, 77 pp.Google Scholar
Ronov, A., Khain, V. & Seslavinsky, K. 1984. Atlas of Lithological–Paleogeographical Maps of the World, Late Precambrian and Paleozoic of Continents. Leningrad: USSR Academy of Sciences, 70 pp.Google Scholar
Rowley, D. B., Raymond, A., Parrish, J. T., Lottes, A. L., Scotese, C. R. & Ziegler, A. M. 1985. Carboniferous palaeogeographic, phytogeographic, and palaeoclimatic reconstructions. International Journal of Coal Geology 5, 742.Google Scholar
Scotese, C. R. 2001. Atlas of Earth History, Volume 1: Paleogeography. Arlington, Texas: PALEOMAP Project, 52 pp.Google Scholar
Scotese, C. R. 2004. A Continental Drift flipbook. The Journal of Geology 112 (6), 729–41.10.1086/424867Google Scholar
Scotese, C. R. 2008. The PALEOMAP Project PaleoAtlas for ArcGIS, Volume 2: Cretaceous Paleogeographic and Plate Tectonic Reconstructions. Arlington, Texas: PALEOMAP Project.Google Scholar
Scotese, C. R. & Barrett, S. F. 1990. Gondwana's movement over the South Pole during the Palaeozoic: evidence from lithological indicators of climate. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.). Geological Society of London, Memoir no. 12, 75–85.Google Scholar
Scotese, C. R. & Golonka, J. 1992. Paleogeographic Atlas. PALEOMAP Progress Report 20-0692. Arlington: Department of Geology, University of Texas, 34 pp.Google Scholar
Soreghan, G. S. 1997. Walther's Law, climate change, and Upper Paleozoic cyclostratigraphy in the Ancestral Rocky Mountains. Geology 67, 1001–4.Google Scholar
Swanson-Hysell, N. L. & Mac Donald, F. A. 2017. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology 45 (8), 719–22.Google Scholar
Tabor, N. J. & Montañez, I. P. 2004. Permo-Pennsylvanian alluvial palaeosols (north-central Texas): high-resolution indicator records of the evolution of early Pangaean palaeoclimate. Sedimentology 51, 851–84.Google Scholar
Tabor, N. J., Montañez, I. P., Scotese, C. R., Poulsen, C. J. & Mack, G. H. 2008. Paleosol archives of environmental and climatic history in paleotropical western Pangea during the latest Pennsylvanian through Early Permian. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C. R., Frank, T. D. & Isbell, J. L.), pp. 291303. Geological Society of America Special Paper no. 441.Google Scholar
Tabor, N. J. & Poulsen, C. J. 2008. Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology, Palaeoecology 268 (3–4), 293310.Google Scholar
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G. & Brinkhuis, H. 2015. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10 (6), 121.Google Scholar
Vilhena, D. A. & Smith, A. B. 2013. Spatial bias in the marine fossil record. PLoS ONE 8 (10), e74470. doi: 10.137.1/journal.pone.0074470.Google Scholar
Walker, L. J., Wilkinson, B. H. & Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow shelf and deep marine settings. The Journal of Geology 110, 7588.Google Scholar
Warren, J. K. 2010. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews 98, 217–68.Google Scholar
Witzke, B. J. 1990. Palaeoclimatic constraints for palaeozoic Palaeolatitudes of Laurentia and Euramerica. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.), pp. 5773. Geological Society of London Memoir no. 12.Google Scholar
Wright, N., Zahirovic, S., Müller, R. D. & Seton, M. 2013. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences 10 (3), 1529–41.Google Scholar
Ziegler, A. M. 1990. Phytogeographic patterns and continental configurations during the Permian Period. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.),. Geological Society of London Memoir no. 12, pp. 363–79.Google Scholar
Ziegler, A. M., Eshel, G., McAllister Rees, P., Rothfus, T. A., Rowley, D. B. & Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–54.Google Scholar
Ziegler, A. M., Hansen, K. S., Johnson, M. E., Kelly, M. A., Scotese, C. R. & Van der Voo, R. 1977. Silurian continental distribution, palaeogeography, climatology, and biogeography. Tectonophysics 40, 1351.Google Scholar
Ziegler, A. M., Hulver, M. L. & Rowley, D. B. 1997. Permian world topography and climate. In Late Glacial and Post-Glacial Environmental Changes – Quaternary, Carboniferous–Permian and Proterozoic (ed. Martini, I. P.), pp. 111–46. Oxford: Oxford University Press.Google Scholar
Ziegler, A. M., Raymond, A., Geirlowski, T. C., Horrell, M. A., Rowley, D. B. & Lottes, A. L. 1987. Coal, climate and terrestrial productivity: the present and early Cretaceous compared. In, Coal and Coal-bearing Strata: Recent Advances (ed. Scott, A. C.). Geological Society of London Special Paper no. 32, pp. 2549.Google Scholar
Ziegler, A. M., Scotese, C. R. & Barrett, S. F. 1983. Mesozoic and Cenozoic paleogeographic maps. In Tidal Friction and the Earth's Rotation II: Proceedings of a Workshop Held at the Centre for Interdisciplinary Research (ZiF) of the University of Bielefeld, 28 September–3 October 1981 (eds Brosche, P. & Sündermann, J.), pp. 240–52. Berlin: Springer Verlag.Google Scholar
Ziegler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E. & Bambach, R.K. 1979. Paleozoic paleogeography. Annual Review of Earth and Planetary Sciences 7, 473502.Google Scholar
Supplementary material: File

Cao et al. supplementary material

Supplementary Material

Download Cao et al. supplementary material(File)
File 19.2 MB