Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T09:09:47.232Z Has data issue: false hasContentIssue false

Sedimentary evolution of the Pennsylvanian–Permian Mulargia–Escalaplano molassic basin (Sardinia, Italy): the most complete record in the Southern Variscan Realm

Published online by Cambridge University Press:  15 June 2022

Luca Giacomo Costamagna*
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, Blocco A, 09042, Monserrato, CA, Italy
*
Author for correspondence: Luca G. Costamagna, Email: lucakost@unica.it

Abstract

Field investigations into the sedimentary evolution of the Mulargia–Escalaplano late- to post-Variscan basin in Sardinia have been carried out. This basin is the only Variscan molassic basin in the Southern Variscan Realm where relationships between all the Late Pennsylvanian to Middle Triassic sedimentary cycles have been detailed for the first time. Here the interplay between tectonics and sedimentation can also be inferred. The investigations evidence that the sedimentary response recorded in the basin matches the progress and final collapse of the southern Variscan chain branch. The basin preserves continental deposits of decreasing energy organized in cycles, separated by weak unconformities related to abrupt volcano-tectonic climaxes and influenced by progressively drying climates. The sedimentary facies and stratigraphy suggest a progressive widening of the basin and decreasing depositional energy to the southeast as well as the migration of the basin depocentre in the same direction. Stratigraphic, environmental and evolutionary correlations between the presently separated NW and SE parts of the basin are reconstructed by considering the role of tectonics. As a result, a detailed lithostratigraphic framework for the Mulargia–Escalaplano basin is proposed. The findings in the sedimentary evolution match the evolution of similar coeval basins of France and Germany, following a pull-apart to extensional model. Based on comparisons with the other Sardinian and SW Europe coeval basins, relationships between ‘limnic’ and red bed successions in SW Europe during the collapse of the Variscan chain are discussed. The renaming of the European tectonomagmatic ‘Mid-Permian Episode’ to the ‘Lower Permian Episode’ is proposed.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldinucci, M, Dallagiovanna, G, Durand, M, Gaggero, L, Martini, IP, Pandeli, E, Sandrelli, F and Tongiorgi, M (2006) Late Paleozoic to Triassic continental deposits from Provence, Ligurian Alps and NW Tuscany. Field Trip Guidebook, International Meeting, 18–23 September 2006, Siena, Italy. Pavia, Italy: Dipartimento di Scienze della Terra, Pavia University, 92 pp.Google Scholar
Andric, N, Sant, K, Matenco, L, Mandic, O, Tomljenovic, B, Pavelic, D, Hrvatovic, H, Demir, V and Ooms, J (2017) The link between tectonics and sedimentation in asymmetric extensional basins: inferences from the study of the Sarajevo-Zenic Basin. Marine Petroleum Geology 83, 305–32. doi: 10.1016/j.marpetgeo.2017.02.024.CrossRefGoogle Scholar
Arthaud, F and Matte, P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: results of a right lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88, 1305–20. doi: 10.1130/0016-7606(1977).2.0.CO;2>CrossRefGoogle Scholar
Assorgia, A, Maccioni, L and Macciotta, G (1983) Carta Geo-petrografica del Vulcanismo Pliocenico della Sardegna Centro-Meridionale. Firenze: SELCA.Google Scholar
Averbuch, O, Mansy, JL, Lamarche, J, Lacquement, F and Hanot, F (2004) Geometry and kinematics of the Boulonnais fold-and thrust belt (N France): implications for the dynamics of the Northern Variscan thrust front. Geodinamica Acta 17, 163–78.10.3166/ga.17.163-178CrossRefGoogle Scholar
Barca, S, Carmignani, L, Eltrudis, A and Franceschelli, M (1995) Origin and evolution of the Permian–Carboniferous basin of Mulargia lake (South-Central Sardinia, Italy) related to the Late-Hercynian extensional tectonics. Comptes Rendus Academie Science Paris 321, 171–8.Google Scholar
Barca, S and Costamagna, LG (2003) The Upper Carboniferous S. Giorgio succession (Iglesiente, SW Sardinia): stratigraphy, depositional setting and evolution of a post-Hercynian molassic basin. Bollettino della Società Geologica Italiana, Special Volume 2, 8998.Google Scholar
Barca, S and Costamagna, LG (2005) Stratigrafia ed analisi di facies dei depositi permiani del Lago Mulargia (Sardegna sud-orientale): primi risultati. Geologica Romana 38, 11–7.Google Scholar
Barca, S and Costamagna, LG (2006a) The Late Carboniferous to Early Triassic basins of Sardinia: relationships between depositional facies, climate and tectonic cycles. In International Conference on “Stratigraphy and palaeogeography of Late- and Post-Hercynian Basins in the Southern Alps, Tuscany and Sardinia (Italy), and comparisons with other Western Mediterranean areas and geodynamic hypotheses”, 18–23 September 2006, Siena, Italy, Abstract, pp. 35–6.Google Scholar
Barca, S and Costamagna, LG (2006b) Stratigrafia, analisi di facies ed architettura deposizionale della successione permiana di Guardia Pisano (Sulcis, Sardegna SW). Bollettino della Società Geologica Italiana 125, 319.Google Scholar
Barca, S, Costamagna, LG, Janssen, S and Von Der Handt, A (2001) I bacini permiani tardo-ercinici della Sardegna centrale: nuove osservazioni paleogeografiche e tettoniche. In FIST – Geoitalia 2001, 3° Forum Italiano di Scienze della Terra, Riassunti. Fasc. 10, Chieti 2001, pp. 203–4.Google Scholar
Barrell, J (1917) Rhythms and the measurement of geologic time. Geological Society of America Bulletin 28, 745904.10.1130/GSAB-28-745CrossRefGoogle Scholar
Baucon, A, Ronchi, A, Felletti, F and Neto de Carvalho, C (2014) Evolution of crustaceans at the edge of the end-Permian crisis: ichnonetwork analysis of the fluvial succession of Nurra (Permian–Triassic, Sardinia, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 410, 74103.CrossRefGoogle Scholar
Becker, A and Schäfer, A (2020) Depth contour maps for the Rotliegend formations of the central Saar-Nahe Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 171, 429–42. doi: 10.1127/zdgg/2020/0253.CrossRefGoogle Scholar
Bernoulli, D and Jenkyns, HC (1974) Alpine, Mediterranean and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In Modern and Ancient Geosynclinal Sedimentation (eds Dott, RH , Jr and Shaver, RH), pp. 129–60. SEPM Special Publication no. 19.10.2110/pec.74.19.0129CrossRefGoogle Scholar
Blair, TC (1986) Tectonic and hydrologic controls on cyclic alluvial fans, fluvial, and lacustrine rift-basin sedimentation, Jurassic–Lowermost Cretaceous Todos Santos Formation, Chiapas, Mexico. Journal of Sedimentary Petrology 57, 845–62.Google Scholar
Blair, TC and Bilodeau, WL (1988) Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to episodic tectonism. Geology 16, 517–20.10.1130/0091-7613(1988)016<0517:DOTCIR>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Blair, TC and McPherson, JG (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research A64, 450–89.Google Scholar
Boggs, S (2009) Petrology of Sedimentary Rocks, 2nd Edition. Cambridge: Cambridge University Press, 606 pp.Google Scholar
Boni, M, Parente, G, Bechstad, Th, De Vivo, B and Iannace, A (2000) Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late Variscan fluid flow event. Sedimentary Geology 131, 181200.CrossRefGoogle Scholar
Boucot, AJ, Xu, C and Scotese, CR (2013) Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology no. 11, 478 pp.Google Scholar
Bridge, JS (1993) Description and interpretation of fluvial deposits: a critical perspective. Sedimentology 40, 801–10.CrossRefGoogle Scholar
Briere, PR (2000) Playa, playa lake, sabkha: proposed definitions for old terms. Journal of Arid Environments 45, 17.CrossRefGoogle Scholar
Broutin, J, Châteauneuf, JJ, Galtier, J and Ronchi, A (1999) L’Autunien d’Autun reste-t-il une référence pour les dépots continentaux du Permien inférieur d’Europe? Apport des données paléobotaniques. Geologie de la France 2, 1731.Google Scholar
Buzzi, L, Gaggero, L and Oggiano, G (2008) The Santa Giusta ignimbrite (NW Sardinia): a clue for the magmatic, structural and sedimentary evolution of a Variscan segment between early Permian and Triassic. Bollettino della Società Geologica Italiana 127, 683–95.Google Scholar
Carmignani, L, Carosi, R, Di Pisa, A, Gattiglio, M, Musumeci, G, Oggiano, G and Pertusati, PC (1994) The Hercynian chain in Sardinia. Geodinamica Acta 7, 3147.CrossRefGoogle Scholar
Carmignani, L, Oggiano, G, Barca, S, Conti, P, Eltrudis, A, Funedda, A, Pasci, S and Salvadori, I (2001) Geologia della Sardegna: Note Illustrative della Carta Geologica della Sardegna a Scala 1:200.000. Roma: Istituto poligrafico e Zecca dello Stato, 272 pp.Google Scholar
Cassinis, G, Cortesogno, L, Gaggero, L, Pittau, P, Ronchi, A and Sarria, E (2000) Late Paleozoic Continental Basins of Sardinia: Field Trip Guidebook. International Field Conference on “The Continental Permian of the Southern Alps and Sardinia (Italy). Regional Reports and General Correlations”, 15–25 September 1999, Brescia, Italy, 116 pp.Google Scholar
Cassinis, A, Cortesogno, L, Gaggero, L, Ronchi, A, Sarria, E, Serri, R and Calzia, P (2003) Reconstruction of igneous, tectonic and sedimentary events in the latest Carboniferous – Early Permian Seui basin (Sardinia, Italy) and evolutionary model. Bollettino della Società Geologica Italiana, Special Volume 2, 99117.Google Scholar
Cassinis, G, Cortesogno, L, Gaggero, L, Ronchi, A and Valloni, R (1996) Stratigraphic and petrographic investigations into the Permo-Triassic continental sequences of Nurra (NW Sardinia). Cuadernos Geologia Iberica 21 (Special Issue), 149–69.Google Scholar
Cassinis, G and Ronchi, A (2002) The (Late-) Post-Variscan continental successions of Sardinia. Rendiconti della Società Paleontologica Italiana 1, 7792.Google Scholar
Cavinato, A and Beneo, E (1959) Carta Geologica d’Italia, Foglio 226 Mandas. Roma: Servizio Geologico d’Italia e Regione autonoma della Sardegna.Google Scholar
Châteauneuf, JJ and Farjanel, G (1989) Synthèse géologique des bassins permiens français. Paris: Mémoires du Bureau de recherches géologiques et minières no. 128, 288 pp.Google Scholar
Christie-Blick, NC and Biddle, KT (1985) Deformation and basin formation along strike-slip faults. In Strike-Slip Deformation, Basin Formation, and Sedimentation (eds Biddle, KT and Christie-Blick, NC), pp. 134. SEPM Special Publication no. 37.Google Scholar
Cohen, KM, Finney, SC, Gibbard, PL and Fan, JX (2013, updated 2020) The International Chronostratigraphic Chart. Episodes 36, 199204.CrossRefGoogle Scholar
Colella, A (1988) Pliocene-Holocene fan deltas and braid deltas in the Crati Basin, southern Italy: a consequence of varying tectonic conditions. In Fan Deltas: Sedimentology and Tectonic Settings (eds Nemec, W and Steel, RJ), pp. 5074. Glasgow: Blackie and Son.Google Scholar
Collinson, JD (1996) Alluvial sediments. In Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd Edition (ed. Reading, HG), pp. 3782. Oxford: Blackwell Science.Google Scholar
Collinson, J, Mountney, N and Thompson, D (2006) Sedimentary Structures, 3rd Edition. Harpenden: Terra Publishing, 294 pp.Google Scholar
Cortesogno, L, Cassinis, G, Dallagiovanna, G, Gaggero, L, Oggiano, G, Ronchi, A, Seno, S and Vanossi, M (1998) The Variscan postcollisional volcanism in Late Carboniferous–Permian sequences of Ligurian Alps, Southern Alps and Sardinia (Italy): a synthesis. Lithos 45, 305–28. doi: 10.1016/S0024-4937(98)00037-1.CrossRefGoogle Scholar
Costamagna, LG (2012) Alluvial, aeolian and tidal deposits in the Lower to Middle Triassic “Buntsandstein” of NW Sardinia (Italy): a new interpretation of the Neo-Tethys transgression. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften 163, 165–83. doi: 10.1127/1860-1804/2012/0163-0165.CrossRefGoogle Scholar
Costamagna, LG (2015) Middle Jurassic continental to marine transition in an extensional tectonics context: the Genna Selole Fm depositional system in the Tacchi area (central Sardinia, Italy). Geological Journal 51, 722–36. doi: 10.1002/gj.2680.CrossRefGoogle Scholar
Costamagna, LG (2016) The Middle Jurassic Alpine Tethyan unconformity and the Eastern Sardinia – Corsica Jurassic High: a sedimentary and regional analysis. Journal of Iberian Geology 42, 311–34. doi: 10.5209/JIGE.51885.CrossRefGoogle Scholar
Costamagna, LG (2018) Investigation methods on continental outcrops: developing an upgrade of the architectural analysis method by field tests in well-exposed Sardinian outcrops. Journal of Mediterranean Earth Sciences 10, 2530. doi: 10.3304/JMES.2018.003.Google Scholar
Costamagna, LG (2019) The carbonates of the post-Variscan basins of Sardinia: the evolution from Carboniferous–Permian humid-persistent to Permian arid-ephemeral lakes in a morphotectonic frame. Geological Magazine 156, 1892–914. doi: 10.1017/S0016756819000232.CrossRefGoogle Scholar
Costamagna, LG (2021a) Upper Pennsylvanian, Permian, and Lower? Triassic continental successions in SW Sardinia (Italy): a petro-sedimentological update of the molassoid Sulcis basin. Permophiles 71, 21–7.Google Scholar
Costamagna, LG (2021b) Tectono-sedimentary evolution of the Upper Paleozoic Mulargia-Escalaplano molassic basin (Sardinia, Italy) in the collapsing Variscan chain: matching the pull-a-part model of the W Europe basins. Permophiles 70, 1922.Google Scholar
Costamagna, LG and Barca, S (2002) The Germanic Triassic of Sardinia (Italy): a stratigraphic, depositional and paleogeographic review. Rivista Italiana di Paleontologia Stratigrafica 108, 67100.Google Scholar
Costamagna, LG and Barca, S (2007) General frame and development of the Late Carboniferous to early Middle Triassic continental basins of Sardinia. In Atti del Convegno GEOSED 2007, 24–28 September 2007, Siena, Italy, p. 33.Google Scholar
Costamagna, LG, Barca, S, Del Rio, M and Pittau, P (2000) Stratigrafia, analisi di facies deposizionale e paleogeografia del Trias del Sarcidano-Gerrei (Sardegna SE). Bollettino della Società Geologica Italiana 119, 473–96.Google Scholar
Critelli, S (2018) Provenance of Mesozoic to Cenozoic Circum-Mediterranean sandstones in relation to tectonic setting. Earth-Science Reviews 185, 624–48. doi: 10.1016/j.earscirev.2018.07.001.CrossRefGoogle Scholar
Dachroth, W (1985) Fluvial sedimentary styles and associated depositional environments in the Buntsandstein west of river Rhine in Saar area and Pfalz (F.R. Germany) and Vosges (France). Aspects of Fluvial Sedimentation in the Lower Triassic Buntsandstein of Europe (ed. Madler, D), pp. 197248. Lecture Notes in Earth Sciences 4. Berlin: Springer-Verlag. doi: 10.1007/BFb0010521.CrossRefGoogle Scholar
Demicco, RV and Hardie, LA (1994) Sedimentary Structures and Early Diagenetic Features of Shallow Marine Carbonate Deposits. SEPM Atlas Series no. 1. Tulsa: SEPM (Society of Sedimentary Geology), 266 pp.Google Scholar
Deroin, JP (2008) Permian and quaternary playas, a discussion based on climatic, tectonic and palaeogeographic settings. Journal of Iberian Geology 34, 1128.Google Scholar
Deroin, JP and Bonin, B (2003) Late Variscan tectonomagmatic activity in Western Europe and surrounding areas: the Mid-Permian Episode. Bollettino della Società Geologica Italiana, Special Volume 2, 169–84.Google Scholar
Dickinson, WR (1970) Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology 40, 695707.Google Scholar
Dickinson, W, Breard, L, Brakenridge, G, Erjavec, J, Ferguson, R, Inman, K, Knepp, R, Lindberg, F and Ryberg, P (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94, 222–35.2.0.CO;2>CrossRefGoogle Scholar
Dostal, J, Mueller, WU and Murphy, JB (2004) Archean Molasse Basin evolution and magmatism, Wabigoon subprovince, Canadian Journal of Geology 112, 435–54.CrossRefGoogle Scholar
Durand, M (2006) The problem of the transition from the Permian to the Triassic Series in southeastern France: comparison with other Peritethyan regions. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, G, Cassinis, G and Schneider, JW), pp. 281–96. Geological Society of London, Special Publication no. 265.Google Scholar
Durand, M (2008) Permian to Triassic continental successions in southern Provence (France): an overview. Bollettino della Società Geologica Italiana 127, 697716.Google Scholar
Edel, JB, Montigny, R and Thuizat, R (1981) Late Palaeozoic rotations of Corsica and Sardinia: new evidence from paleomagnetic and K–Ar studies. Tectonophysics 79, 201–23.CrossRefGoogle Scholar
Einsele, G (1992) Sedimentary Basins: Evolution, Facies and Sediment Budget. Berlin: Springer-Verlag, 628 pp.CrossRefGoogle Scholar
Elter, FM, Gaggero, L, Mantovani, F, Pandeli, E and Costamagna, LG (2020) The Atlas-East Variscan-Elbe shear system and its role in the formation of the pull-apart Late Palaeozoic basins. International Journal of Earth Sciences 109, 739–60. doi: 10.1007/s00531-020-01830-y.CrossRefGoogle Scholar
Flügel, E (2004) Microfacies of Carbonate Rock: Analysis, Interpretation and Application. Berlin: Springer-Verlag, 980 pp.CrossRefGoogle Scholar
Folk, RL (1974) Petrology of Sedimentary Rocks. Austin: Hemphill Publishing Company, 190 pp.Google Scholar
Folk, RL (1980) Petrology of Sedimentary Rocks, 2nd Edition. Austin: Hemphill Publishing Company, 182 pp.Google Scholar
Francavilla, F, Cassinis, G, Cocozza, T, Gandin, A, Gasperi, G, Gelmini, R, Rau, A, Tongiorgi, M and Vai, GB (1977) Macroflora e datazione di alcuni affioramenti (tardo) postercinici presso il Lago di Mulargia (Sardegna sud-occidentale). Bollettino del Gruppo di Lavoro sul Paleozoico 2, 31–3.Google Scholar
Freytet, P, Lebreton, ML and Paquette, Y (1992) The carbonates of the Permian lakes of North Massif Central, France. Carbonates and Evaporites 7, 122–31.CrossRefGoogle Scholar
Funedda, A, Carmignani, L, Pasci, S, Patta, D, Uras, V, Conti, P and Sale, V (2006) Note illustrative del F°556 – Assemini. Memorie Descrittive della Carta Geologica d’Italia. Rome: APAT–Servizio Geologico d’Italia, 188 pp.Google Scholar
Funedda, A, Carmignani, L, Pertusati, PC, Uras, V, Pisanu, G and Murtas, M (2008) Note Illustrative del F° 540 – Mandas. Memorie Descrittive della Carta Geologica d’Italia. Rome: APAT–Servizio Geologico d’Italia, 208 pp.Google Scholar
Gaggero, L, Gretter, N, Langone, A and Ronchi, A (2017) U–Pb geochronology and geochemistry of Late Paleozoic volcanism in Sardinia (Southern Variscides). Geoscience Frontiers 1, 122. doi: 10.1016/j.gsf.2016.11.015.Google Scholar
Gand, G, Châteauneuf, JJ, Durand, M, Chabard, D and Passaqui, JP (2007) Early Permian Continental Environments in the Autun Basin. Pre-Symposium Fieldtrip in the Autun Basin, Early Permian Continental Environments, International Symposium, 2–4 July 2007, Burgundy, France. Association des sedimentologistes français, 35 pp.Google Scholar
Garzanti, E, Vezzoli, G, Lombardo, B, Ando’, S, Mauri, E, Monguzzi, S and Russo, M (2004) Collision-Orogen Provenance (Western Alps): detrital signatures and unroofing trends. Journal of Geology 112, 145–64.CrossRefGoogle Scholar
Gretter, N, Ronchi, A, López-Gómez, J, Arche, A, De la Horra, R, Barrenechea, JF and Lago, M (2015) The Late Palaeozoic-Early Mesozoic from the Catalan Pyrenees (Spain): 60 Myr of environmental evolution in the frame of the western peri-Tethyan palaeogeography. Earth-Science Review 150, 679708. doi: 10.1016/j.earscirev.2015.09.001.CrossRefGoogle Scholar
Gutiérrez-Alonso, G, Fernández-Suárez, J, Jeffries, TE, Johnston, ST, Pastor-Galán, D, Murphy, JB, Franco, MP and Gonzalo, JC (2011) Diachronous postorogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30, TC50078. doi: 10.1029/2010TC002845.CrossRefGoogle Scholar
Heller, PL, Angevine, CL, Winslow, NS and Paola, C (1988) Two-phase stratigraphic model of foreland-basin sequences. Geology 16, 501–4.2.3.CO;2>CrossRefGoogle Scholar
Heller, RL and Paola, C (1992) The large-scale dynamics of grain-size variation in alluvial basins. 2: application to syntectonic conglomerate. Basin Research 4, 91102.CrossRefGoogle Scholar
Henk, A (1993a) Late orogenic basin evolution in the Variscan Internides: the Saar-Nahe Basin, southwest Germany. Tectonophysics 223, 273–90.CrossRefGoogle Scholar
Henk, A (1993b) Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland). Geologische Rundschau 82, 319.CrossRefGoogle Scholar
Ingersoll, RV, Bullard, TF, Ford, RL, Grimm, JP, Pickle, JD and Sares, SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology 54, 103–16.Google Scholar
Iverson, RM (1997) The physics of debris flows. Reviews of Geophysics 35, 245–96.CrossRefGoogle Scholar
Kilias, Ad, Vamvaka, A, Falalakis, G, Sfeikos, A, Papadimitriou, E, Gkarlaouni, Ch and Karakostas, B (2013) The Mesohellenic Trough and the Thrace Basin. Two Tertiary molassic basins in Hellenides: do they really correlate? Bulletin of the Geological Society of Greece 47, 551–62.CrossRefGoogle Scholar
Konrád, G, Sebel, K, Halász, A and Babinszki, E (2010) Sedimentology of a Permian playa lake: the Boda Claystone Formation, Hungary. Geologos 16, 2741.CrossRefGoogle Scholar
Körner, F, Schneider, JW, Hoernes, S, Gand, G and Kleeberg, R (2003) Climate and continental sedimentation in the Permian of the Lodève basin (southern France). Bollettino della Società Geologica Italiana, Special Volume 2, 185–91.Google Scholar
Lago, M, Arranz, E, Pocovi, A, Gali, C and Gil-Imaz, A (2004) Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. In Permo-Carboniferous Magmatism and Rifting in Europe (eds Wilson, M, Neumann, ER, Davies, GR, Timmerman, MJ, Heeremans, M and Larsen, BT), pp. 439–64. Geological Society of London, Special Publication no. 223.Google Scholar
Lindholm, R (1987) A Practical Approach to Sedimentology. London: Allen & Unwin, 282 pp.CrossRefGoogle Scholar
Lopez, M, Gand, G, Garric, J, Körner, F and Schneider, J (2008) The playa environments of the Lodève Permian basin (Languedoc-France). Journal of Iberian Geology 34, 2956.Google Scholar
Maizels, J (1989) Sedimentology, paleoflow dynamics and flood history of jokulhlaup deposits; paleohydrology of Holocene sediment sequences in Southern Iceland sandur deposits. Journal of Sedimentary Petrology 59, 204–23.Google Scholar
Mann, P, Hempton, M, Bradley, D and Burke, K (1983) Development of pull-apart basins. Journal of Geology 91, 529–54.CrossRefGoogle Scholar
Marteau, P (1983) Le bassin permo-carbonifère d’Autun: Stratigraphie, sédimentologie et aspects structuraux. Doctoral dissertation. University of Dijon. Paris: Bureau de recherches géologiques et minières, Service géologique national, 198 pp.Google Scholar
Mastalerz, K (1995) Deposits of high-density turbidity currents on fan-delta slopes: an example from the upper Visean Szczawno Formation, Intrasudetic Basin, Poland. Sedimentary Geology 98, 121–46.CrossRefGoogle Scholar
McNamara, K (2008) Stromatolites, 2nd Edition. Welshpool: Western Australian Museum, 88 pp.Google Scholar
Miall, AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22, 261308.CrossRefGoogle Scholar
Miall, AD (1992) Alluvial deposits. In Facies Models: Response to Sea-Level Change (eds Walker, RG and James, NP), pp. 119–42. St. John’s, Newfoundland: The Geological Association of Canada.Google Scholar
Miall, AD (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin: Springer-Verlag, 586 pp.Google Scholar
Miall, AD (2000) Principles of Sedimentary Basin Analysis, 3rd Edition. Berlin: Springer-Verlag, 616 pp.CrossRefGoogle Scholar
Miall, AD (2010) Alluvial deposits. In Facies Models 4 (eds James, NP and Dalrymple, RW), pp. 105–37. GEOtext 6. St. John’s, Newfoundland: The Geological Association of Canada. Google Scholar
Miall, AD (2014) Fluvial Depositional Systems. Berlin: Springer-Verlag, 318 pp.CrossRefGoogle Scholar
Michel, LA, Tabor, NJ, Montañez, IP, Schmitz, MD and Davydov, VI (2015) Chronostratigraphy and paleoclimatology of the Lodève Basin, France: evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 430, 118–31. doi: 10.1016/j.palaeo.2015.03.020.CrossRefGoogle Scholar
Möhring, G and Schäfer, A (1990) Caliche im Stefan des Saar–Nahe-Beckens. Mainzer Geowissenschaftliche Mitteilungen 19, 6380.Google Scholar
Murphy, JB, Nance, RD and Cawood, PA (2009) Contrasting modes of supercontinent formation and the conundrum of Pangaea. Gondwana Research 15, 408–20.CrossRefGoogle Scholar
Muttoni, G, Gaetani, M, Kent, DV, Sciunnach, D, Angiolini, L, Berra, F, Garzanti, E, Mattei, M and Zanchi, A (2009) Opening of the Neo-Tethys ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14, 1748.CrossRefGoogle Scholar
Muttoni, G, Kent, DV, Garzanti, E, Brack, P, Abrahamsen, N and Gaetani, M. (2003) Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth and Planetary Science Letters 215, 379–94.CrossRefGoogle Scholar
Nemec, W and Steel, RJ (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In Sedimentology of Gravels and Conglomerates (eds Koster, EH and Steel, RJ), pp. 131. Memoirs of the Canadian Society of Petroleum Geology 10.Google Scholar
Nemec, W and Steel, RJ (1988) What is a fan delta and how do we recognize it? In Fan Deltas: Sedimentology and Tectonic Settings (eds Nemec, W and Steel, RJ), pp. 313. Glasgow: Blackie and Son.Google Scholar
Nilsen, TH and Sylvester, AG (1995) Strike-slip basins. In Tectonics of Sedimentary Basins (eds Busby, CJ and Ingersoll, RV), pp. 425–57. Oxford: Blackwell Science.Google Scholar
Noorbergen, LJ, Abels, HA, Hilgen, FJ, Robson, BE, De Jong, E, Dekkers, MJ, Krijgsman, W, Smit, J, Collinson, ME and Kuiper, KF (2018) Conceptual models for short-eccentricity-scale climate control on peat formation in a lower Palaeocene fluvial system, north-eastern Montana (USA). Sedimentology 65, 775808.CrossRefGoogle Scholar
Olsen, PE (1991) Tectonic, climatic and biotic modulation of lacustrine ecosystems – examples from Newark Supergroup of Eastern North America. In Lacustrine Basin Exploration: Case Studies and Modern Analogs (ed. Katz, B), pp. 209–24. American Association of Petroleum Geologists, Memoir no. 50.Google Scholar
Pearce, JA, Harris, NBW and Tindle, AG (1984) Trace element discrimination diagrams for the tectonic interpretation of the granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pecorini, G (1974) Nuove osservazioni sul Permo-Trias di Escalaplano. Bollettino della Società Geologica Italiana 93, 991–9.Google Scholar
Pellenard, P, Gand, G, Schmitz, M, Galtier, J, Broutin, B and Stéyer, JS (2017) High-precision U–Pb zircon ages for explosive volcanism calibrating the NW European continental Autunian stratotype. Gondwana Research 51, 118–36. doi: 10.1016/j.gr.2017.07.014.CrossRefGoogle Scholar
Perotti, CR and Cassinis, G (2006) Late Variscan geodynamic setting of the continental basins in Southern Europe. In International Conference on “Stratigraphy and Palaeogeography of Late- and Post-Hercynian Basins in the Southern Alps, Tuscany and Sardinia (Italy), and Comparisons with Other Western Mediterranean Areas and Geodynamic Hypotheses”, 18–23 September 2006, Siena, Italy, Abstracts, pp. 910.Google Scholar
Pertusati, PC, Sarria, E, Cherchi, GP, Carmignani, L, Barca, S, Benedetti, M, Chighine, G, Cincotti, F, Oggiano, G, Ulzega, A, Orru, P and Pintus, C (2002) F° 541 “Jerzu”. Note illustrative della Carta Geologica d’Italia in scala 1:50.000. Rome: APAT–Servizio Geologico d’Italia, 170 pp.Google Scholar
Pettijohn, FJ (1975) Sedimentary Rocks. New York: Harper & Row, 628 pp.Google Scholar
Pittau, P, Barca, S, Cocherie, A, Del Rio, M, Fanning, M and Rossi, P (2002) Le bassin permien de Guardia Pisano (SW Sardaigne, Italie): palynostratigraphie, paléophytogéographie, corrélations et âge radiométrique des produits volcaniques associés. Geobios 35, 561–80.CrossRefGoogle Scholar
Pittau, P, Del Rio, M and Funedda, A (2008) Relationships between plant communities characterization and basin formation in the Carboniferous–Permian of Sardinia. Bollettino della Società Geologica Italiana 127, 637–53.Google Scholar
Platt, NH (1991) Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. In Calcretes (eds Wright, VP and Tucker, ME), pp. 323–42. International Association of Sedimentologists Reprint Series Volume 2. Oxford: Blackwell Scientific Publications.CrossRefGoogle Scholar
Potter, PE and Pettijohn, FJ (1963) Paleocurrent and Basin Analysis. Berlin: Springer-Verlag, 296 pp.CrossRefGoogle Scholar
Reading, HG and Collinson, JD (1996) Clastic coasts. In Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd Edition (ed. Reading, HG), pp. 154231. Oxford: Blackwell Science.Google Scholar
Reineck, HE and Singh, IB (1980) Depositional Sedimentary Environments. Berlin: Springer-Verlag, 556 pp.CrossRefGoogle Scholar
Ricci Lucchi, F (1985) Influence of transport processes and basin geometry on sand composition. In Provenance of Arenites (ed. Zuffa, GG), pp. 1945. NATO ASI Series vol. 148. Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar
Rickwood, PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22, 247–63.CrossRefGoogle Scholar
Rodríguez-Pascua, MA, Calvo, JP, De Vicente, G and Gómez-Gras, D (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology 135, 117–35.CrossRefGoogle Scholar
Ronchi, A, Broutin, J, Diez, JB, Freytet, P, Galtier, J and Lethiers, F (1998) New paleontological discoveries in some Early Permian sequences of Sardinia. Biostratigraphic and paleogeographic implications. Comptes Rendus de l’Academie des Sciences Paris 327, 713–19.Google Scholar
Ronchi, A and Falorni, P (2004) Formazione di Rio su Luda. Carta Geologica d’Italia scala 1:50.000. Catalogo delle Formazioni, Unità validate (a cura della Commissione Italiana di Stratigrafia). I Quaderni, serie III, del SGI 7 (fasc. V), 155–9.Google Scholar
Ronchi, A, Kustatscher, E, Pittau, P and Santi, G (2012) Pennsylvanian floras from Italy: an overview of the main sites and historical collections. Geologia Croatica 65, 299322.CrossRefGoogle Scholar
Ronchi, A, Sarria, E and Broutin, J (2008) The “Autuniano Sardo”: basic features for a correlation through the Western Mediterranean and Paleoeurope. Bollettino della Società Geologica Italiana 127, 655–81.Google Scholar
Roscher, M and Schneider, JW (2006) Permo-Carboniferous climate: early Pennsylvanian to late Permian climate development of Central Europe in a regional and global context. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, SG, Cassinis, G and Schneider, JW), pp. 95136. Geological Society of London, Special Publication no. 265.Google Scholar
Rosen, MR (1994) The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. In Paleoclimate and Basin Evolution of Playa Systems (ed. Rosen, MR), pp. 118. Geological Society of America, Special Paper no. 289.Google Scholar
Rossi, Ph, Oggiano, G and Cocherie, A (2009) A restored section of the “southern Variscan realm” across the Corsica–Sardinia microcontinent. Comptes Rendus Geoscience 341, 224–38.CrossRefGoogle Scholar
Sarria, E and Serri, R (1986) Tettonica compressiva tardopaleozoica nel bacino antracitifero di Seui (Sardegna centrale). Rendiconti della Società Geologica Italiana 9, 710.Google Scholar
Schäfer, A (2011) Tectonics and sedimentation in the continental strike-slip Saar-Nahe Basin (Carboniferous–Permian, West Germany). Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften 162, 127–55. doi: 10.1127/1860-1804/2011/0162-0127.CrossRefGoogle Scholar
Schäfer, A (2012) Lacustrine environments in Carboniferous–Permian Saar-Nahe Basin, southwest Germany. In Lacustrine Sandstone Reservoirs and Hydrocarbon Systems (eds Baganz, OW, Bartov, Y, Bohacs, K and Nummedal, D), pp. 367–84. American Association of Petroleum Geologists Memoir vol. 95.Google Scholar
Schäfer, A and Korsch, RJ (1998) Formation and fill of the Saar-Nahe Basin (Permo–Carboniferous, Germany). Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften 149, 233–69.CrossRefGoogle Scholar
Schäfer, A, Rast, U and Stamm, R (1990) Lacustrine paper shales in the Permocarboniferous Saar-Nahe Basin (West Germany): depositional environment and chemical characterization. In Sediments and Environmental Geochemistry: Selected Aspects and Case Histories (eds Heling, D, Rothe, P, Forstner, U and Stoffers, P), pp. 220–38. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schneider, J, Körner, F, Roscher, M and Kroner, U (2006) Permian climate development in the northern peri-Tethys area: the Lodève basin, French Massif Central, compared in a European and global context. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 161–83. doi: 10.1016/j.palaeo.2006.03.057.CrossRefGoogle Scholar
Schneider, JW, Lucas, SG, Scholze, F, Voigt, S, Marchetti, L, Klein, H, Oplustil, S, Werneburgh, R, Golubev, VK, Barrick, JE, Nemyrovska, T, Ronchi, A, Day, MO, Silantiev, VV, Rößler, R, Saber, H, Linnemann, U, Zharinova, V and Shen, SZ (2020) Late Paleozoic–early Mesozoic continental biostratigraphy — links to the Standard Global Chronostratigraphic Scale. Paleoworld 29, 186238. doi: 10.1016/j.palwor.2019.09.001.CrossRefGoogle Scholar
Schneider, J and Romer, RL (2010) The late Variscan Molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian zone. In Pre-Mesozoic Geology of Saxo-Thuringia: From the Cadomian Active Margin to the Variscan Orogen (eds Linnemann, U and Romer, RL), pp. 323–46. Stuttgart: Schweizerbart.Google Scholar
Schumm, SA (1991) To Interpret the Earth: Ten Ways to Be Wrong. Cambridge: Cambridge University Press, 134 pp.Google Scholar
Shen, S and Henderson, CM (2014) Progress of the Permian Timescale. In STRATI 2013 (eds Rocha, R, Pais, J, Kullberg, JC and Finney, S), pp. 447–51. Cham: Springer International Publishing. doi: 10.1007/978-3-319-04364-7_86.CrossRefGoogle Scholar
Siedlecka, A (1972) Length-slow chalcedony and relicts of sulphates – evidences of evaporitic environments in the Upper Carboniferous and Permian beds of Bear Island, Svalbard. Journal of Sedimentary Petrology 42, 812–16.Google Scholar
Smoot, JP and Lowenstein, TK (1991) Depositional environments of non-marine evaporites. In Evaporites, Petroleum and Mineral Resources (ed. Melvin, JL), pp. 189347. Amsterdam: Elsevier.CrossRefGoogle Scholar
Stampfli, GM and Marchant, RH (1997) Geodynamic evolution of the Tethyan margin of the Western Alps. In Deep Structure of the Swiss Alps: Results of NRP 20 (eds Pfiffner, A, Lehner, P, Heitzmann, P, Mueller, S and Steck, A), pp. 223–40. Basel: Birkhäuser.Google Scholar
Stow, DA (2005) Sedimentary Rocks in the Field: A Colour Guide. London: Manson Publishing, 320 pp.CrossRefGoogle Scholar
Sturm, M and Matter, A (1978) Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In Modern and Ancient Lake Sediments (eds Tucker, ME and Matter, A), pp. 147–68. International Association of Sedimentologists, Special Publication no. 2. Oxford: Blackwell Scientific Publications. CrossRefGoogle Scholar
Swanson, RG (1981) Sample Examination Manual. AAPG Methods in Exploration Series no. 1. Tulsa: The American Association of Petroleum Geologists.CrossRefGoogle Scholar
Talbot, MR and Allen, PA (1996) Lakes. In Sedimentary Environments: Processes, Facies and Stratigraphy (ed. Reading, HG), pp. 83124. Oxford: Blackwell Science.Google Scholar
Talbot, MR, Holm, K and Wilians, MAJ (1994) Sedimentation in low-gradient margin systems: a comparison of the Late Triassic of the northwest Somerset (England) and the Late Quaternary of east-central Australia. In Paleoclimate and Basin Evolution of Playa Systems (ed. Rosen, MR), pp. 97117. Geological Society of America, Special Paper no. 289.CrossRefGoogle Scholar
Toutin-Morin, N (1993) The sedimentary record of post-Hercynian evolution along the edge of the Maures and the Tanneron massifs from the Late Carboniferous to the Present. Geologie de la France 2, 121.Google Scholar
Toutin-Morin, N and Bonijoly, D (1992) Structuration des bassins de Provence orientale à la fin de l’ere primaire. Cuadernos de Geologia Iberica 16, 5974.Google Scholar
Toutin-Morin, N, Broutin, J and Freytet, P (2002) Le Permien d’Europe occidentale et d’Afrique du nord. Mémoire de l’association des géologues du Permien 2, 2951.Google Scholar
Tucker, ME (2001) Sedimentary Petrology, 3rd Edition. Oxford: Blackwell, 262 pp.Google Scholar
Tucker, ME (2011) Sedimentary Rocks in the Field, 4th Edition. Chichester: Wiley-Blackwell, 276 pp.Google Scholar
Tucker, ME and Wright, VP (1990) Carbonate Sedimentology. Oxford: Blackwell, 482 pp.CrossRefGoogle Scholar
Turner, P (1980) Continental Red Beds. Amsterdam: Elsevier, 564 pp.Google Scholar
Vai, GB (1991) Paleozoic strike-slip pulses and palaeogeography in the circum-Mediterranean Tethyan realm. Palaeogeogeography, Palaeoclimatology, Palaeoecology 87, 233–52.CrossRefGoogle Scholar
Vai, GB (1997) Late Carboniferous to early Permian palaeogeography of the Italian and central Mediterranean area. Geodiversitas 19, 221–8.Google Scholar
Vai, GB (2003) Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian. Palaeogeogeography, Palaeoclimatology, Palaeoecology 196, 125–55.CrossRefGoogle Scholar
Vai, GB and Izart, A (2000) Artinskian. In Atlas Peri-Tethys, Palaeogeographical Maps, Explanatory Notes (coord. Crasquin, S), pp. 1118. Paris: CCGM-CGMW.Google Scholar
Van der Weil, AM, Van den Berg, GD and Hebeda, EH (1992) Uplift, subsidence and volcanism in the Southern Neiva Basin, Colombia, Part 2: influence on fluvial deposition in the Miocene Gigante Fm. Journal of South American Earth Sciences 5, 175–96.CrossRefGoogle Scholar
Van Houten, FB (1973) Meaning of molasse. Geological Society of America Bulletin 84, 1973–6.2.0.CO;2>CrossRefGoogle Scholar
Vardabasso, S (1966) Il Verrucano sardo. Atti del Simposyum sul Verrucano. Società Toscana Scienze Naturali 12, 293310.Google Scholar
von Seckendorff, V, Arz, C and Lorenz, V (2004) Magmatism of the late Variscan intermontane Saar-Nahe Basin (Germany): a review. In Permo-Carboniferous Magmatism and Rifting in Europe (eds Wilson, M, Neumann, ER, Davies, GR, Timmerman, MJ, Heeremans, M and Larsen, BT), pp. 361–91. Geological Society of London, Special Publication no. 223 Google Scholar
Warren, J (2000) Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews 52, 181.CrossRefGoogle Scholar
Warren, JK (2016) Evaporites: A Geological Compendium. Cham: Springer International Publishing, 1822 pp. doi: 10.1007/978-3-319-13512-0_1.Google Scholar
Wright, VP and Tucker, ME (1991) Calcretes: an introduction. In Calcretes (eds Wright, VP and Tucker, ME), pp. 122. International Association of Sedimentologists Reprint Series Volume 2. Oxford: Blackwell Scientific Publications.CrossRefGoogle Scholar
Zaghdoudi, S, Kadri, A, Alayet, MB, Bounasri, MA, Essid, EM and Gasmi, M (2021) Genesis and structural arrangement of the collapsed Oued Gueniche plain and the surrounding folds (Neogene molassic basin of Bizerte, northeastern Tunisia): insights from gravity data. Journal of African Earth Sciences 174, 104053. doi: 10.1016/j.jafrearsci.2020.104053 CrossRefGoogle Scholar
Zheng, JS, Mermet, JF, Toutin-Morin, N, Hanes, J, Gondolo, A, Morin, R and Féraud, G (1992) 40Ar-39Ar dating of Permian magmatism and fluorite-baryte veins of eastern Provence (France). Geodinamica Acta 5, 203215. doi: 10.1080/09853111.1992.11105228 CrossRefGoogle Scholar
Ziegler, PA (1990) Geological Atlas of Western and Central Europe, 2nd Edition. The Hague: Shell Internationale Petroleum Maatschappij B.V., 240 pp., 56 pls.Google Scholar
Ziegler, PA (1993) Late Paleozoic-early Mesozoic Plate reorganization: evolution and demise of the Variscan fold belt. In Pre-Mesozoic Geology in the Alps (eds von Raumer, JF and Neubauer, F), pp. 171201. Berlin: Springer-Verlag.Google Scholar
Ziegler, PA (2005) Europe: Permian to Recent evolution. In The Encyclopedia of Geology (eds Selley, RC, Cocks, LR and Plimer, IR), pp. 102–25. Amsterdam: Elsevier. doi: 10.1016/B0-12-369396-9/00469-X.CrossRefGoogle Scholar
Ziegler, PA and Stampfli, GM (2001) Late Paleozoic-early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of the Neotethys. Natura Bresciana, Annali del Museo Civico di Scienza e Naturali, Brescia, Monografia 25, 1734.Google Scholar
Zuffa, GG (1985) Optical analyses of arenites: influence of methodology on 1060 compositional results. In Provenance of Arenites (ed. Zuffa, GG), pp. 165–89. NATO ASI Series vol. 148. Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar