Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T05:32:39.868Z Has data issue: false hasContentIssue false

Sedimentary rhythms in the Jurassic and Cretaceous of Svalbard

Published online by Cambridge University Press:  01 May 2009

Henning Dypvik
Affiliation:
Department of Geology, University of Oslo, P.O.Box 1047, Blindern, N-0316 Oslo 3, Norway

Abstract

The Janusfjellet Subgroup on Svalbard consists on a 400 to 500 m thick sequence representing shallow marine depositional environments. Coarsening-upward units, often separated by carbonate beds, are commonly found in rhythmic developments. Rhythmicities (285000(?) and 850000(?) years) in the sedimentary sections show periods which may reflect pulses in nearby sea-floor spreading or strike-slip fault regimes. An astronomical control of the cycles cannot be excluded, although such changes most probably should be expected in superimposed episodes of shorter duration.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J. & Wilkinson, B. H. 1988. Periodicity of Mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation. Journal or Geology 96, 313–22.CrossRefGoogle Scholar
Cloetingh, S. 1986. Intraplate stresses: a new tectonic mechanism for fluctuations of relative sea level. Geology 14, 617–20.2.0.CO;2>CrossRefGoogle Scholar
Cloetingh, S. 1988. Intraplate stresses: a tectonic model for third-order cycles in apparent sea-level? SEPM Special Publication no. 42, 1929.Google Scholar
Coleman, J. M. 1988. High-frequency sea-level fluctuation and continental shelf structure. In Shelf Sedimentation: Events and rhythms. Program and Abstracts (eds Field, M. E. and Clifton, H. E.), p. 12. SEPM Research Conference, Santa Cruz, 1988.Google Scholar
Dypvik, H. 1978. Origin of carbonate in marine shales of the Janusfjellet Formation, Svalbard. Norsk Polar-institutt Årbok 1977, 101–10.Google Scholar
Dypvik, H., Nagy, J., Eikeland, T. A., Backer-Owe, K., Andresen, A., Haremo, P., Bjaerke, T., Johansen, H. & Elverhøi, A. 1991 a. The Janusfjellet Subgroup (Bathonian to Hauterivian) on Central Spitsbergen. Polar Research 9, 2143.CrossRefGoogle Scholar
Dypvik, H., Nagy, J., Eikeland, T. A., Backer-Owe, K. & Johansen, H. 1991 b. The Bathonian to Hauterivian Janusfjellet Subgroup in Spitsbergen – depositional conditions as reflected in field appearance and sediment composition. Sedimentary Geology 72, 5578.CrossRefGoogle Scholar
Einsele, G. 1982. General remarks about the nature, occurrence and recognition of cyclic sequences (period-ites). In Cyclic and Event Stratification (eds G., Einsele and A., Seilacher), pp. 37. Springer-Verlag.CrossRefGoogle Scholar
Faleide, J. I., Gudlaugsson, S. T. & Jacquart, G. 1984. Evolution of the western Barents Sea. Marine and Petroleum Geology 1, 123–50.CrossRefGoogle Scholar
Fisher, A. G. 1964. The Lofer cyclothems of the Alpine Triassic. Kansas Geological Survey Bulletin 169, 107–49.Google Scholar
Fisher, A. G. 1986. Climatic rhythms recorded in strata. Annual Review of Earth and Planetary Science 14, 351–76.CrossRefGoogle Scholar
Fisher, A. G. & Arthur, M. A. 1977. Secular variations in the pelagic realm. SEPM Special Publication no. 25, 1950.Google Scholar
Grasty, R. L. 1967. Orogeny, a cause of world-wide regression of the seas. Nature 216, 779–80.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–67.CrossRefGoogle ScholarPubMed
Haq, B. U. & Van Eysinga, F. W. B. 1987. Geological Time Table. Amsterdam: Elsevier.Google Scholar
Haremo, P., Andresen, A., Dypvik, H., Nagy, J., Elverhøi, A., Eikeland, T. A. & Johansen, H. 1990. Structural development along the Billefjorden Fault Zone in the area between Kjellstrømdalen and Adventdalen/Sassendalen, central Spitsbergen. Polar Research 8, 195216.Google Scholar
Harland, W. B. 1972. Mesozoic geology of Svalbard. In Arctic Geology (ed. Pitcher, M. G.), pp. 135–48. American Association of Petroleum Geologists, Memoir 19.Google Scholar
Hayes, J. D. & Pitman, W. C. III. 1973. Lithospheric plate motion, sea level changes and climatic and ecological consequences. Nature 246, 1822.CrossRefGoogle Scholar
House, M. R. 1985. A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms. Nature 315, 721–5.CrossRefGoogle Scholar
Håkansson, E., Birkelund, T., Piasecki, S. & Zakharov, V. 1981. Jurassic-Cretaceous boundary strata of the extreme Arctic (Pearly Land, North Greenland). Bulletin, Geological Society of Denmark 30, 1142.Google Scholar
Hákansson, E. & Stemmerik, L. 1984. Wandel Sea Basin – the North Greenland equivalent to Svalbard and the Barents Shelf. In Petroleum Geology of the North European Margin (ed. Spencer, A. M.), pp. 97107. Norwegian Petroleum Society, and Graham & Trotman.CrossRefGoogle Scholar
Milankovitch, M. 1941. Canon of insolation and the ice-age problem. Königlich Serbische Akademie, Special Publication no. 133, Beograd, English version, translated from German by the Israel Program for Scientific Translations, Jerusalem, 1969. Washington, D.C.; U.S. Department of Commerce and the National Science Foundation, no. 484.Google Scholar
Sclater, J. G. & Francheteau, J. 1970. The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth. Geophysical Journal of the Royal Astronomical Society 20, 509–42.CrossRefGoogle Scholar
Thickpenny, A. 1984. The sedimentology of the Swedish Alum Shales. In Fine-grained Sediments: Deep Water Processes and Fades (eds Stow, D. A. V. and Piper, D. J. W.), pp. 511–25. Geological Society Special Publication no. 15.Google Scholar
Vail, P. R., Mitchum, R. M. Jr & Thompson, S. H. 1977. Seismic stratigraphy and global changes of sea level. Part 4. Global cycles of relative changes of sea level. American Association of Petroleum Geologists Memoir 26, 8397.Google Scholar
Van Wagoner, J. C, Mitchum, R. M., Campion, K. M. & Rahmanian, V. D. 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Cores and Outcrops. American Association of Petroleum Geologists. Methods in Exploration Series no. 7, 55 pp.CrossRefGoogle Scholar