Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T08:19:18.874Z Has data issue: false hasContentIssue false

SIMS U–Pb zircon geochronological constraints on upper Ediacaran stratigraphic correlations, South China

Published online by Cambridge University Press:  13 December 2016

CHUAN YANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth NG12 5GG, UK
XIAN-HUA LI*
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
MAOYAN ZHU
Affiliation:
College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
DANIEL J. CONDON
Affiliation:
NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth NG12 5GG, UK
*
§Author for correspondence: lixh@gig.ac.cn

Abstract

Fossiliferous Ediacaran successions of South China, the Doushantuo and Dengying formations and their equivalents, are key to understanding bio- and geological evolution at the Neoproterozoic–Cambrian transition. However, their absolute ages, especially the upper Ediacaran successions, are poorly constrained. SIMS zircon U–Pb dating results in this study suggest that ash beds at the basal and middle parts of the Jiucheng Member (middle Dengying Formation) in eastern Yunnan Province were deposited at 553.6 ± 2.7/(3.8) Ma and 546.3 ± 2.7/(3.8) Ma, respectively. These new dates indicate that the age for the base of Dengying Formation in eastern Yunnan Province is similar to the 550.55 ± 0.75 Ma date, which is from an ash bed at the top of the Miaohe Member and has been regarded as the age for the base of Dengying Formation in Yangtze Gorges area. These dates do not permit a clear test of the two correlation models for the chronostratigraphic position of the Miaohe Member (uppermost Doushantuo Formation vs. middle Dengying Formation), implying that further integrated intra-basinal stratigraphic correlations and more high-resolution chronological data from the upper Ediacaran deposits of South China are required. New dates of the Jiucheng Member constrain the age of the fossil biotas in the middle Dengying Formation and extend the stratigraphic range of Rangea, Hiemalora and Charniodiscus to 546.3 ± 2.7/(3.8) Ma. The geochronology of the Dengying Formation implies that Ediacaran-type fossils preserved in this formation are younger than the White Sea Assemblage and temporally overlapping with the Nama Assemblage.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W. & Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31, 431–4.2.0.CO;2>CrossRefGoogle Scholar
An, Z. H., Jiang, G. Q., Tong, J. N., Tian, L., Ye, Q., Song, H. Y. & Song, H. J. 2015. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China. Precambrian Research 271, 243–53.CrossRefGoogle Scholar
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., Newall, M. J. & Allen, P. A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307, 1097–145.CrossRefGoogle Scholar
Burgess, S. D., Bowring, S. & Shen, S. Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences 111, 3316–21.CrossRefGoogle ScholarPubMed
Cai, Y. P., Xiao, S. H., Hua, H. & Yuan, X. L. 2015. New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Research 261, 1224.CrossRefGoogle Scholar
Chen, J. Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H. M., Li, C. W. & Davidson, E. H. 2004. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305, 218–22.CrossRefGoogle ScholarPubMed
Chen, X., Ling, H. F., Vance, D., Shields-Zhou, G. A., Zhu, M. Y., Poulton, S. W., Och, L. M., Jiang, S. Y., Li, D., Cremonese, L. & Archer, C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications 6, published online 18 May 2015, doi: 10.1038/ncomms8142.Google ScholarPubMed
Chen, Z., Zhou, C. M., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X. L. & Xiao, S. H. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224, 690701.CrossRefGoogle Scholar
Chen, Z., Zhou, C. M., Xiao, S. H., Wang, W., Guan, C. G., Hua, H. & Yuan, X. L. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports 4, 110.Google ScholarPubMed
Condon, D., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. 2015. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta 164, 464–80.CrossRefGoogle Scholar
Condon, D., Zhu, M. Y., Bowring, S., Wang, W., Yang, A. H. & Jin, Y. G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–8.CrossRefGoogle ScholarPubMed
Crowley, Q. G., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B. & Benn, K. 2014. Chemical abrasion applied to LA-ICP-MS U-Pb zircon geochronology. Minerals 4, 503–18.CrossRefGoogle Scholar
Ding, L., Li, Y., Hu, X., Xiao, Y., Su, C. & Huang, J. 1996. Sinian Miaohe Biota. Beijing: Geological Publishing House, 221 pp.Google Scholar
Droser, M. L. & Gehling, J. G. 2015. The advent of animals: The view from the Ediacaran. Proceedings of the National Academy of Sciences 112, 4865–70.CrossRefGoogle ScholarPubMed
Gehling, J. G. & Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology 41, 447–50.CrossRefGoogle Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598604.CrossRefGoogle Scholar
Hofmann, H. J. & Mountjoy, E. W. 2001. Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils. Geology 29, 1091–4.2.0.CO;2>CrossRefGoogle Scholar
Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J. & Schoene, B. 2016. Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology: uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, published online 21 April 2016, doi: 10.1111/j.1751–908X.2016.00379.x.CrossRefGoogle Scholar
Hua, H., Chen, Z. & Yuan, X. L. 2007. The advent of mineralized skeletons in Neoproterozoic Metazoa-new fossil evidence from the Gaojiashan Fauna. Geological Journal 42, 263–79.Google Scholar
Ireland, T. R. & Williams, I. S. 2003. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry 53, 215–41.CrossRefGoogle Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. T. & Essling, A. M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.CrossRefGoogle Scholar
Jensen, S., Saylor, B. Z., Gehling, J. G. & Germs, G. J. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28, 143–6.2.0.CO;2>CrossRefGoogle Scholar
Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., Zhang, S. H. & Wu, H. C. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters 261, 303–20.CrossRefGoogle Scholar
Jiang, G. Q., Kennedy, M. J. & Christie-Blick, N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–6.CrossRefGoogle ScholarPubMed
Jiang, G. Q., Shi, X. Y., Zhang, S. H., Wang, Y. & Xiao, S. H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551Ma) in South China. Gondwana Research 19, 831–49.CrossRefGoogle Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M. & Christie-Blick, N. 2004. A new period for the geologic time scale. Science 305, 621–2.CrossRefGoogle ScholarPubMed
Kryza, R., Crowley, Q. G., Larionov, A., Pin, C., Oberc-Dziedzic, T. & Mochnacka, K. 2012. Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Research 21, 757–67.CrossRefGoogle Scholar
Le Guerroué, E., Allen, P. A. & Cozzi, A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambrian Research 146, 6892.CrossRefGoogle Scholar
Li, D., Ling, H. F., Shields-Zhou, G. A., Chen, X., Cremonese, L., Och, L., Thirlwall, M. & Manning, C. J. 2013 a. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Research 225, 128–47.CrossRefGoogle Scholar
Li, Q. L., Li, X. H., Liu, Y., Wu, F. Y., Yang, J. H. & Mitchell, R. H. 2010. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chemical Geology 269, 396405.CrossRefGoogle Scholar
Li, X. H., Li, W. X., Li, Z. X. & Liu, Y. 2008 a. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: a major episode of continental rift magmatism during the breakup of Rodinia. Lithos 102, 341–57.CrossRefGoogle Scholar
Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F. & Yang, Y. H. 2009 a. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research 174, 117–28.CrossRefGoogle Scholar
Li, X. H., Liu, Y., Li, Q. L., Guo, C. H. & Chamberlain, K. R. 2009 b. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems 10, Q04010, published online 10 April 2009, doi: 10.1029/2009GC002400.Google Scholar
Li, X. H., Tang, G. Q., Gong, B., Yang, Y. H., Hou, K. J., Hu, Z. C., Li, Q. L., Liu, Y. & Li, W. X. 2013 b. Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin 58, 4647–54.CrossRefGoogle Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., Waele, B. D., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochud, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008 b. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. W. & Kinny, P. D. 2002. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Liu, P. J., Xiao, S. H., Yin, C. Y., Chen, S. M., Zhou, C. M. & Li, M. 2014. Ediacaran acanthomorphic acritarchs and other microfossils from chert nodules of the upper Doushantuo Formation in the Yangtze Gorges area, South China. Journal of Paleontology 88 (sp72), 1139.CrossRefGoogle Scholar
Liu, P. J., Yin, C. Y., Chen, S. M., Tang, F. & Gao, L. Z. 2013. The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia. Precambrian Research 225, 2943.CrossRefGoogle Scholar
Liu, Y., Li, Q. L., Tang, G. Q., Li, X. H. & Yin, Q. Z. 2015. Towards higher precision SIMS U-Pb zircon geochronology via dynamic multi-collector analysis. Journal of Analytical Atomic Spectrometry 30, 979–85.CrossRefGoogle Scholar
Lu, M., Zhu, M. Y., Zhang, J. M., Shields-Zhou, G., Li, G. X., Zhao, F. C., Zhao, X. & Zhao, M. J. 2013. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research 225, 86109.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, no. 4.Google Scholar
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307–15.CrossRefGoogle ScholarPubMed
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A., Fedonkin, M. A. & Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science 288, 841–5.CrossRefGoogle ScholarPubMed
Mattinson, J. M. 2005. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.CrossRefGoogle Scholar
McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. 2015. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochimica et Cosmochimica Acta 164, 481501.CrossRefGoogle Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33, 421–42.CrossRefGoogle Scholar
Nasdala, L., Hanchar, J. M., Kronz, A. & Whitehouse, M. J. 2005. Long-term stability of alpha particle damage in natural zircon. Chemical Geology 220, 83103.CrossRefGoogle Scholar
Noble, S. R., Condon, D. J., Carney, J. N., Wilby, P. R., Pharaoh, T. C. & Ford, T. D. 2015. U-Pb geochronology and global context of the Charnian Supergroup, UK: Constraints on the age of key Ediacaran fossil assemblages. Geological Society of America Bulletin 127, 250–65.CrossRefGoogle Scholar
Och, L. M. & Shields-Zhou, G. A. 2012. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Science Reviews 110, 2657.CrossRefGoogle Scholar
Qian, Y., Zhu, M. Y., He, T. G. & Jiang, Z. W. 1996. New investigation of Precambrian-Cambrian boundary sections in eastern Yunnan. Acta Micropalaeontologica Sinica 13, 225–40 (in Chinese with English abstract).Google Scholar
Shields-Zhou, G. A., Porter, S. & Halverson, G. P. 2016. A new rock-based definition for the Cryogenian Period (circa 720–635 Ma). Episodes 39 (1), 38.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R.H. & Jaeger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Tang, F., Song, X. L., Yin, C. Y., Liu, P. J., Awramik, S. M., Wang, Z. Q. & Gao, L. Z. 2006. Discoveries of Longfengshaniaceans from the Uppermost Ediacaran (Sinian) in Eastern Yunnan, South China and significances. Acta Geologica Ainica 80, 1643–50 (in Chinese with English abstract).Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology 43, 104–13.CrossRefGoogle ScholarPubMed
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, X. F., Erdtmann, B. D., Chen, X. H. & Mao, X. D. 1998. Integrated sequence-, bio- and chemo-stratigraphy of the terminal Proterozoic to Lowermost Cambrian “black rock series” from central South China. Episodes 21, 178–89.Google Scholar
Watts, K. E., Coble, M. A., Vazquez, J. A., Henry, C. D., Colgan, J. P. & John, D. A. 2016. Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada. Chemical Geology 439, 139–51.CrossRefGoogle Scholar
Wendt, I. & Carl, C. 1991. The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section 86, 275–85.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J. C. & Speigel, W. 1995. Three natural zircon standards for U-Th Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar
Xiao, S. H. & Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution 24, 3140.CrossRefGoogle ScholarPubMed
Xiao, S. H., Shen, B., Zhou, C. M., Xie, G. W. & Yuan, X. L. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America 102, 10227–32.CrossRefGoogle ScholarPubMed
Xiao, S. H., Yuan, X. L., Steiner, M. & Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology 76, 347–76.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S. H., Zhang, Y. & Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391, 553–8.CrossRefGoogle Scholar
Yang, C., Li, X. H., Wang, X. C. & Lan, Z. W. 2015. Mid-Neoproterozoic angular unconformity in the Yangtze Block revisited: Insights from detrital zircon U-Pb age and Hf-O isotopes. Precambrian Research 266, 165–78.CrossRefGoogle Scholar
Yang, Y. N., Li, Q. L., Liu, Y., Tang, G. Q., Ling, X. X. & Li, X. H. 2014. Zircon U-Pb dating by Secondary Ion Mass Spectrometry. Earth Science Frontiers 21, 8192 (in Chinese with English abstract).Google Scholar
Yin, Z. J., Zhu, M. Y., Davidson, E. H., Bottjer, D. J., Zhao, F. C. & Tafforeau, P. 2015. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America 112, E1453–60.Google ScholarPubMed
Zhang, W. T. & Hou, X. G. 1985. Prelinimanry notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontologica Sinica 24, 591–5 (in Chinese with English abstract).Google Scholar
Zhang, Z. L., Hua, H. & Zhang, Z. F. 2015. Problematic Ediacaran fossil Shaanxilithes from the Jiucheng Member of Wangjiawan section in Jinning, Yunnan Province. Acta Palaeontologica Sinica 54, 1228.Google Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. Q. & Ding, J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters 196, 5167.CrossRefGoogle Scholar
Zhu, M. Y. 2010. The origin and Cambrian explosion of animals: fossils evidence from China. Acta Palaeontologica Sinica 49, 269–87 (in Chinese with English abstract).Google Scholar
Zhu, M. Y., Li, G. X., Zhang, J. M., Steiner, M., Qian, Y. & Jiang, Z. W. 2001. Early Cambrian stratigraphy of east Yunnan, southwestern China: a synthesis. Acta Palaeontologica Sinica 40 (Sup), 439.Google Scholar
Zhu, M. Y., Lu, M., Zhang, J. M., Zhao, F. C., Li, G. X., Yang, A. H., Zhao, X. & Zhao, M. J. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research 225, 728.CrossRefGoogle Scholar
Zhu, M. Y., Strauss, H. & Shields, G. A. 2007. From snowball earth to the Cambrian bioradiation: calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 16.CrossRefGoogle Scholar
Zhu, M. Y., Zhang, J. M. & Yang, A. H. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 761.CrossRefGoogle Scholar
Zhu, M. Y., Zhang, J. M., Steiner, M., Yang, A. H., Li, G. X. & Erdtmann, B. D. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science 13, 951–60.CrossRefGoogle Scholar