Skip to main content
×
Home

Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah, USA)

  • NICOLAS OLIVIER (a1), ARNAUD BRAYARD (a2), EMMANUEL FARA (a2), KEVIN G. BYLUND (a3), JAMES F. JENKS (a4), EMMANUELLE VENNIN (a2), DANIEL A. STEPHEN (a3) and GILLES ESCARGUEL (a1)...
Abstract
Abstract

In Timpoweap Canyon near Hurricane (Utah, USA), spectacular outcrop conditions of Early Triassic rocks document the geometric relationships between a massive Smithian fenestral-microbial unit and underlying, lateral and overlying sedimentary units. This allows us to reconstruct the evolution of depositional environments and high-frequency relative sea-level fluctuations in the studied area. Depositional environments evolved from a coastal plain with continental deposits to peritidal settings with fenestral-microbial limestones, which are overlain by intertidal to shallow subtidal marine bioclastic limestones. This transgressive trend of a large-scale depositional sequence marks a long-term sea-level rise that is identified worldwide after the Permian–Triassic boundary. The fenestral-microbial sediments were deposited at the transition between continental settings (with terrigenous deposits) and shallow subtidal marine environments (with bioturbated and bioclastic limestones). Such a lateral zonation questions the interpretation of microbial deposits as anachronistic and disaster facies in the western USA basin. The depositional setting may have triggered the distribution of microbial deposits and contemporaneous marine biota. The fenestral-microbial unit is truncated by an erosional surface reflecting a drop in relative sea level at the scale of a medium depositional sequence. The local inherited topography allowed the recording of small-scale sequences characterized by clinoforms and short-distance lateral facies changes. Stratal stacking pattern and surface geometries allow the reconstruction of relative sea-level fluctuations and tracking of shoreline migrations. The stacking pattern of these small-scale sequences and the amplitude of corresponding high-frequency sea-level fluctuations are consistent with climatic control. Large- and medium-scale sequences suggest a regional tectonic control.

Copyright
Corresponding author
Author for correspondence: Nicolas.Olivier@univ-lyon1.fr
References
Hide All
Baud A., Richoz S. & Pruss S. B. 2007. The Lower Triassic anachronistic carbonate facies in space and time. Global and Planetary Change 55, 81–9.
Beatty T. W., Zonneveld J.-P. & Henderson C. M. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology 36, 771–4.
Berra F., Balini M., Levera M., Nicora A. & Salamati R. 2012. Anatomy of carbonate mounds from the Middle Anisian of Nakhlak (Central Iran): architecture and age of a subtidal microbial-bioclastic carbonate factory. Facies 58, 685705.
Blakey R. C. 1974. Stratigraphic and depositional analysis of the Moenkopi Formation, southeastern Utah. Utah Geological and Mineral Survey, Bulletin 104, 81 pp.
Blakey R. C. 1977. Petroliferous lithosomes in the Moenkopi Formation, southern Utah. Utah Geology 4, 6784.
Blakey R. C. 1979. Oil impregnated carbonate rocks of the Timpoweap Member, Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona. Utah Geology 6, 4554.
Brayard A., Bylund K. G., Jenks J., Stephen D. A., Olivier N., Escarguel G., Fara E. & Vennin E. 2013. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlations and basinal paleogeography. Swiss Journal of Paleontology 132, 141–219.
Brayard A., Nützel A., Kaim A., Escarguel G., Hautmann M., Stephen D. A., Bylund K. G., Jenks J. & Bucher H. 2011 a. Gastropod evidence against the Early Triassic Lilliput effect: Reply. Geology 39, e233 pp.
Brayard A., Nützel A., Stephen D. A., Bylund K. G., Jenks J. & Bucher H. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology 38, 147–50.
Brayard A., Vennin E., Olivier N., Bylund K. G., Jenks J., Stephen D. A., Bucher H., Hofmann R., Goudemand N. & Escarguel G. 2011 b. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience 4, 693–7.
Brühwiler T., Bucher H., Brayard A. & Goudemand N. 2010. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Smithian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 491501.
Chen Z. Q., Fraiser M. L. & Bolton C. 2012. Early Triassic trace fossils from Gondwana Interior Sea: implication for ecosystem recovery following the end-Permian mass extinction in south high-latitude region. Gondwana Research 22, 238–55.
Collinson J. W., Kendall C. G. S. C. & Marcantel J. B. 1976. Permian-Triassic boundary in eastern Nevada and west-central Utah. Bulletin of the Geological Society of America 87, 821–4.
Dickinson W. R. 2006. Geotectonic evolution of the Great Basin. Geosphere 2, 353–68.
Embry A. F. 1997. Global sequence boundaries of the Triassic and their identification in the western Canada sedimentary basin. Canadian Petroleum Geology Bulletin 45, 415–33.
Esteban M. & Pray L.C. 1983. Pisoids and pisolite facies (Permian), Guadalupe Mountains, New Mexico and West Texas. In Coated Grains (ed. Peryt T.), pp. 503–37. Berlin: Springer-Verlag.
Flügel E. 2004. Microfacies of carbonate rocks. Analysis, interpretation and application. Berlin, Heidelberg, New York: Springer, 976 pp.
Forel M.-B., Crasquin S., Kershaw S. & Collin P.-Y. 2013. In the aftermath of the end-Permian extinction: the microbialite refuge? Terra Nova 25, 137–43.
Frakes L. A., Francis J. E. & Syktus J. I. 1992. Climate Modes of the Phanerozoic: The History of the Earth's Climate Over the Past 600 million Years. Cambridge: Cambridge University Press, 274 pp.
Goodspeed T. H. & Lucas S. G. 2007. Stratigraphy, sedimentology, and sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, Utah. In Triassic of the American West (eds Lucas S. G. & Spielmann J. A.), pp. 91102. New Mexico Museum of Natural History and Science Bulletin no. 40.
Gregory H. E. 1950. Geology and geography of the Zion Park Region, Utah and Arizona. Geological Survey Professional Paper 220, 1200.
Hallam A. & Wignall P. B. 1999. Mass extinctions and sea-level changes. Earth Science Reviews 48, 217–50.
Haq B. U. & Al-Qahtani A. M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. Geoarabia 10, 127–60.
Haq U. B., Hardenbol J. & Vail P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–67.
Haq B. U. & Shutter S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–8.
Heydari E., Hassanzadeh J., Wade W. J. & Ghazi A. M. 2003. Permian–Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1. Sedimentology. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 405–23.
Hofmann R., Goudemand N., Wasmer M., Bucher H. & Hautmann M. 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 216–26.
Hofmann R., Hautmann M., Wasmer M. & Bucher H. 2013. Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontologica Polonica 58, 149–73.
Huang C., Tong J., Hinnov L. & Chen Z. 2011. Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology 39, 779–82.
Jenson J. 1986. Stratigraphy and facies analysis of the Upper Kaibab and Lower Moenkopi formations in Southwest Washington County, Utah. Brigham Young University Geology Studies 33, 121.
Kelley N. P., Motani R., Jiang D. Y., Rieppel O. & Schmitz L. 2013. Selective extinction of Triassic marine reptiles during long-term sea-level changes illuminated by seawater strontium isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, published online 3 August 2012. doi: 10.1016/j.palaeo.2012.07.026.
Kershaw S., Crasquin S., Li Y., Collin P.-Y., Forel M.-B., Mu X., Baud A., Wang Y., Xie S., Maurer F. & Guo L. 2012. Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10, 2547.
Kershaw S., Li Y., Crasquin-Soleau S., Feng Q., Mu X., Collin P.-Y., Reynolds A. & Guo L. 2007. Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution. Facies 53, 409–25.
Kidder D. L. & Worsley T. R. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 207–37.
Konstantinov A.G. 2008. Triassic ammonoids of Northeast Asia: diversity and evolutionary stages. Stratigraphy and Geological Correlation 16, 490502.
Lehrmann D. J., Payne J. L., Pei D., Enos P., Druke D., Steffen K., Zhang J., Wei J., Orchard M. J. & Ellwood B. 2007. Record of the End-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 200–17.
Lucas S. G., Krainer K. & Milner A. R. 2007. The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. In Triassic of the American West (eds Lucas S. G. & Spielmann J. A.), pp. 109–17. New Mexico Museum of Natural History and Science Bulletin no. 40.
Marenco P. J., Griffin J. M., Fraiser M. L. & Clapham M. E. 2012. Paleoecology and geochemistry of Early Triassic (Spathian) microbial mounds and implications for anoxia following the end-Permian mass extinction. Geology 40, 715–8.
Mata S. A. & Bottjer D. J. 2011. Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 158178.
McKee E. D. 1954. Stratigraphy and History of the Moenkopi Formation of Triassic Age. Geological Society of America, Memoir 61, 133 pp.
Nielson R. L. 1991. Petrology, sedimentology and stratigraphic implications of the Rock Canyon conglomerate, southwestern Utah. Utah Geological Survey, Miscellaneous Publication 91, 1–65.
Paull R. A. & Paull R. K. 1993. Interpretation of Early Triassic nonmarine-marine relations, Utah, USA. New Mexico Museum of Natural History and Science Bulletin 3, 403–9.
Paull R. K. & Paull R. A. 1997. Transgressive conodont faunas of the early Triassic: an opportunity for correlation in the Tethys and the circum-Pacific. In Late Palaeozoic and Early Mesozoic Circum-Pacific Events and their Global Correlation (eds Dickins J. M., Zunyi Y., Hongfu Y., Lucas S. G. & Acharyya S. K.), pp. 158–67. Cambridge University Press, World and Regional Geology 10.
Pérez-López A. & Pérez-Valera F. 2011. Tempestite facies model for the epicontinental Triassic carbonates of the Betic Cordillera (southern Spain). Sedimentology 59, 646–78.
Peryt T. M. 1983. Vadoids. In Coated Grains (ed. Peryt T. M.), pp. 437–49. Berlin, Heidelberg, New York: Springer.
Pruss S. B. & Bottjer D. J. 2004. Late Early Triassic microbial reefs of the western United States; a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 127–37.
Pruss S. B., Bottjer D. J., Corsetti F. A. & Baud A. 2006. A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth-Science Reviews 78, 193206.
Quiquerez A. & Dromart G. 2006. Environmental control on granular clinoforms of ancient carbonate shelves. Geological Magazine 143, 343–65.
Reeside J. B. Jr. & Bassler H. 1922. Stratigraphic sections in southwestern Utah and northwestern Arizona. US Geological Survey, Professional Paper 129-D, pp. 53–77.
Ridente D., Petrungaro R., Falese F. & Chiocci F. L. 2012. Middle–Upper Pleistocene record of 100-ka depositional cycles on the Southern Tuscany continental margin (Tyrrhenian Sea, Italy). Sequence architecture and margin growth pattern. Marine Geology 326–8, 113.
Romano C., Goudemand N., Vennemann T. W., Ware D., Schneebeli-Hermann E., Hochuli P. A., Brühwiler T., Brinkmann W. & Bucher H. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience 6, 5760.
Ruban D. A. 2008. Evolutionary rates of the Triassic marine macrofauna and sea-level changes: Evidences from the Northwestern Caucasus, Northern Neotethys (Russia). Palaeoworld 17, 115–25.
Ruddiman W. F. 2003. Orbital insolation, ice volume, and greenhouse gases. Quaternary Science Reviews 22, 1597–629.
Sano H. & Nakashima K. 1997. Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, southwest Japan. Facies 36, 124.
Sano H., Onoue T., Orchard M. J. & Martini R. 2012. Early Triassic peritidal carbonate sedimentation on a Panthalassan seamount: the Jesmond succession, Cache Creek Terrane, British Columbia. Facies 58, 113–30.
Schubert J. K. & Bottjer D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20, 883–6.
Shackleton N. J. 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183–90.
Stewart J. H., Poole F. G. & Wilson R. F. 1972. Stratigraphy and origin of the Triassic Moenkopi Formation and related strata in the Colorado Plateau region. Geological Survey Professional Paper 691, 1195.
Twitchett R. J. 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 190213.
Weidlich O. 2007. PTB mass extinction and earliest Triassic recovery overlooked? New evidence for a marine origin of Lower Triassic mixed carbonate–siliciclastic sediments (Rogenstein Member), Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 259–69.
Woods A. D. 2009. Anatomy of an anachronistic carbonate platform: Lower Triassic carbonates of the southwestern United States. Australian Journal of Earth Sciences 56, 825–39.
Woods A. D. 2013. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change 105, 91101.
Wu H., Zhang S., Feng Q., Jiang G., Li H. & Yang T., 2012. Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Research 22, 748–59.
Yang H., Chen Z. Q., Wang Y., Tong J., Song H. & Chen J. 2011. Composition and structure of microbialite ecosystems following the End-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 111–28.
Yang W. & Lehrmann D. J. 2003. Milankovitch climatic signals in Lower Triassic (Olenekian) peritidal carbonate successions, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 201, 283306.
Zatoń M., Taylor P. D. & Vinn O. 2013. Early Triassic (Spathian) post-extinction microconchids from Western Pangea. Journal of Paleontology 87, 159–65.
Zonneveld J.-P., Gingras M. K. & Beatty T. W. 2010. Diverse ichnofossil assemblages following the P-T mass extinction, Lower Triassic, Alberta and British Columbia, Canada: evidence for shallow marine refugia on the northwestern coast of Pangaea. Palaios 25, 368–92.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 140 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.