Skip to main content
    • Aa
    • Aa

Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah, USA)


In Timpoweap Canyon near Hurricane (Utah, USA), spectacular outcrop conditions of Early Triassic rocks document the geometric relationships between a massive Smithian fenestral-microbial unit and underlying, lateral and overlying sedimentary units. This allows us to reconstruct the evolution of depositional environments and high-frequency relative sea-level fluctuations in the studied area. Depositional environments evolved from a coastal plain with continental deposits to peritidal settings with fenestral-microbial limestones, which are overlain by intertidal to shallow subtidal marine bioclastic limestones. This transgressive trend of a large-scale depositional sequence marks a long-term sea-level rise that is identified worldwide after the Permian–Triassic boundary. The fenestral-microbial sediments were deposited at the transition between continental settings (with terrigenous deposits) and shallow subtidal marine environments (with bioturbated and bioclastic limestones). Such a lateral zonation questions the interpretation of microbial deposits as anachronistic and disaster facies in the western USA basin. The depositional setting may have triggered the distribution of microbial deposits and contemporaneous marine biota. The fenestral-microbial unit is truncated by an erosional surface reflecting a drop in relative sea level at the scale of a medium depositional sequence. The local inherited topography allowed the recording of small-scale sequences characterized by clinoforms and short-distance lateral facies changes. Stratal stacking pattern and surface geometries allow the reconstruction of relative sea-level fluctuations and tracking of shoreline migrations. The stacking pattern of these small-scale sequences and the amplitude of corresponding high-frequency sea-level fluctuations are consistent with climatic control. Large- and medium-scale sequences suggest a regional tectonic control.

Corresponding author
Author for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Baud , S. Richoz & S. B. Pruss 2007. The Lower Triassic anachronistic carbonate facies in space and time. Global and Planetary Change 55, 81–9.

T. W. Beatty , J.-P. Zonneveld & C. M. Henderson 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology 36, 771–4.

F. Berra , M. Balini , M. Levera , A. Nicora & R. Salamati 2012. Anatomy of carbonate mounds from the Middle Anisian of Nakhlak (Central Iran): architecture and age of a subtidal microbial-bioclastic carbonate factory. Facies 58, 685705.

A. Brayard , K. G. Bylund , J. Jenks , D. A. Stephen , N. Olivier , G. Escarguel , E. Fara & E. Vennin 2013. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlations and basinal paleogeography. Swiss Journal of Paleontology 132, 141–219.

A. Brayard , A. Nützel , A. Kaim , G. Escarguel , M. Hautmann , D. A. Stephen , K. G. Bylund , J. Jenks & H. Bucher 2011 a. Gastropod evidence against the Early Triassic Lilliput effect: Reply. Geology 39, e233 pp.

A. Brayard , E. Vennin , N. Olivier , K. G. Bylund , J. Jenks , D. A. Stephen , H. Bucher , R. Hofmann , N. Goudemand & G. Escarguel 2011 b. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience 4, 693–7.

T. Brühwiler , H. Bucher , A. Brayard & N. Goudemand 2010. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Smithian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 491501.

Z. Q. Chen , M. L. Fraiser & C. Bolton 2012. Early Triassic trace fossils from Gondwana Interior Sea: implication for ecosystem recovery following the end-Permian mass extinction in south high-latitude region. Gondwana Research 22, 238–55.

J. W. Collinson , C. G. S. C. Kendall & J. B. Marcantel 1976. Permian-Triassic boundary in eastern Nevada and west-central Utah. Bulletin of the Geological Society of America 87, 821–4.

W. R. Dickinson 2006. Geotectonic evolution of the Great Basin. Geosphere 2, 353–68.

M. Esteban & L.C. Pray 1983. Pisoids and pisolite facies (Permian), Guadalupe Mountains, New Mexico and West Texas. In Coated Grains (ed. T. Peryt ), pp. 503–37. Berlin: Springer-Verlag.

U. B. Haq , J. Hardenbol & P. R. Vail 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–67.

B. U. Haq & S. R. Shutter 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–8.

R. Hofmann , N. Goudemand , M. Wasmer , H. Bucher & M. Hautmann 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 216–26.

C. Huang , J. Tong , L. Hinnov & Z. Chen 2011. Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology 39, 779–82.

S. Kershaw , S. Crasquin , Y. Li , P.-Y. Collin , M.-B. Forel , X. Mu , A. Baud , Y. Wang , S. Xie , F. Maurer & L. Guo 2012. Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10, 2547.

S. Kershaw , Y. Li , S. Crasquin-Soleau , Q. Feng , X. Mu , P.-Y. Collin , A. Reynolds & L. Guo 2007. Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution. Facies 53, 409–25.

D. L. Kidder & T. R. Worsley 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 207–37.

A.G. Konstantinov 2008. Triassic ammonoids of Northeast Asia: diversity and evolutionary stages. Stratigraphy and Geological Correlation 16, 490502.

D. J. Lehrmann , J. L. Payne , D. Pei , P. Enos , D. Druke , K. Steffen , J. Zhang , J. Wei , M. J. Orchard & B. Ellwood 2007. Record of the End-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 200–17.

P. J. Marenco , J. M. Griffin , M. L. Fraiser & M. E. Clapham 2012. Paleoecology and geochemistry of Early Triassic (Spathian) microbial mounds and implications for anoxia following the end-Permian mass extinction. Geology 40, 715–8.

R. K. Paull & R. A. Paull 1997. Transgressive conodont faunas of the early Triassic: an opportunity for correlation in the Tethys and the circum-Pacific. In Late Palaeozoic and Early Mesozoic Circum-Pacific Events and their Global Correlation (eds J. M. Dickins , Y. Zunyi , Y. Hongfu , S. G. Lucas & S. K. Acharyya ), pp. 158–67. Cambridge University Press, World and Regional Geology 10.

T. M. Peryt 1983. Vadoids. In Coated Grains (ed. T. M. Peryt ), pp. 437–49. Berlin, Heidelberg, New York: Springer.

S. B. Pruss & D. J. Bottjer 2004. Late Early Triassic microbial reefs of the western United States; a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 127–37.

C. Romano , N. Goudemand , T. W. Vennemann , D. Ware , E. Schneebeli-Hermann , P. A. Hochuli , T. Brühwiler , W. Brinkmann & H. Bucher 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience 6, 5760.

W. F. Ruddiman 2003. Orbital insolation, ice volume, and greenhouse gases. Quaternary Science Reviews 22, 1597–629.

H. Sano & K. Nakashima 1997. Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, southwest Japan. Facies 36, 124.

H. Sano , T. Onoue , M. J. Orchard & R. Martini 2012. Early Triassic peritidal carbonate sedimentation on a Panthalassan seamount: the Jesmond succession, Cache Creek Terrane, British Columbia. Facies 58, 113–30.

J. K. Schubert & D. J. Bottjer 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20, 883–6.

N. J. Shackleton 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183–90.

R. J. Twitchett 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 190213.

O. Weidlich 2007. PTB mass extinction and earliest Triassic recovery overlooked? New evidence for a marine origin of Lower Triassic mixed carbonate–siliciclastic sediments (Rogenstein Member), Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 259–69.

A. D. Woods 2009. Anatomy of an anachronistic carbonate platform: Lower Triassic carbonates of the southwestern United States. Australian Journal of Earth Sciences 56, 825–39.

A. D. Woods 2013. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change 105, 91101.

H. Wu , S. Zhang , Q. Feng , G. Jiang , H. Li & T. Yang , 2012. Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Research 22, 748–59.

H. Yang , Z. Q. Chen , Y. Wang , J. Tong , H. Song & J. Chen 2011. Composition and structure of microbialite ecosystems following the End-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 111–28.

W. Yang & D. J. Lehrmann 2003. Milankovitch climatic signals in Lower Triassic (Olenekian) peritidal carbonate successions, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 201, 283306.

J.-P. Zonneveld , M. K. Gingras & T. W. Beatty 2010. Diverse ichnofossil assemblages following the P-T mass extinction, Lower Triassic, Alberta and British Columbia, Canada: evidence for shallow marine refugia on the northwestern coast of Pangaea. Palaios 25, 368–92.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 104 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2017. This data will be updated every 24 hours.