Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T14:41:39.262Z Has data issue: false hasContentIssue false

Stages of Late Palaeozoic deformation and intrusive activity in the western part of the North Patagonian Massif (southern Argentina) and their geotectonic implications

Published online by Cambridge University Press:  30 July 2008

W. VON GOSEN*
Affiliation:
Geozentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, D-91054 Erlangen, Germany

Abstract

Analyses of structures in the western part of the North Patagonian Massif (southern Argentina) suggest a polyphase evolution, accompanied by continuous intrusive activity. The first two deformations (D1, D2) and metamorphism affected the upper Palaeozoic, partly possibly older Cushamen Formation clastic succession and different intrusive rocks. A second group of intrusions, emplaced after the second deformational episode (D2), in many places contain angular xenoliths of the foliated country rocks, indicating high intrusive levels with brittle fracturing of the crust. Deformation of these magmatic rocks presumably began during (the final stage of) cooling and continued under solid-state conditions. It probably coincided with the third deformational event (D3) in the country rocks. Based on published U–Pb zircon ages of deformed granitoids, the D2-deformation and younger event along with the regional metamorphism are likely to be Permian in age. An onset of the deformational and magmatic history during Carboniferous times, however, cannot be excluded. The estimated ~W–E to NE–SW compression during the D2-deformation, also affecting the first group of intrusive rocks, can be related to subduction beneath the western Patagonia margin or an advanced stage of collisional tectonics within extra-Andean Patagonia. The younger ~N–S to NE–SW compression might have been an effect of oblique subduction in the west and/or continuing collision-related deformation. As a cause for its deviating orientation, younger block rotations during strike-slip faulting cannot be excluded. The previous D2-event presumably also had an effect on compression at the northern Patagonia margin that was interpreted as result of Patagonia's late Palaeozoic collision with the southwestern Gondwana margin. With the recently proposed Carboniferous subduction and collision south of the North Patagonian Massif, the entire scenario might suggest that Patagonia consists of two different pieces that were amalgamated with southwestern Gondwana during Late Palaeozoic times.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basei, M. A. S., Varela, R., Sato, A. M., Siga Jr, O. & Llambías, E. J. 2002. Geocronología sobre rocas del Complejo Yaminué, Macizo Norpatagónico, Río Negro, Argentina. XV. Congreso Geológico Argentino (El Calafate), Actas III, 117–22.Google Scholar
Cerredo, M. E. 1997. The metamorphism of Cushamen Formation, Río Chico area. North Patagonian Massif. Argentina. VIII. Congreso Geológico Chileno (Universidad Católica del Norte), Actas II, 1236–40.Google Scholar
Cerredo, M. E. & López de Luchi, M. 1997. Tunnel Tonalites in Río Chico, North Patagonian Massif, Argentina. An intermediate facies of Mamil Choique granitoids? VIII. Congreso Geológico Chileno (Universidad Católica del Norte), Actas II, 1246–9.Google Scholar
Cerredo, M. E. & López de Luchi, M. G. 1998. Mamil Choique Granitoids, southwestern North Patagonian Massif, Argentina: magmatism and metamorphism associated with a polyphasic evolution. Journal of South American Earth Sciences 11 (5), 499515.Google Scholar
Chernicoff, C. J. & Zappettini, E. O. 2004. Geophysical evidence for terrane boundaries in south-central Argentina. Gondwana Research 7 (4), 1105–16.CrossRefGoogle Scholar
Cingolani, C., Dalla Salda, L., Hervé, F., Munizaga, F., Pankhurst, R. J., Parada, M. A. & Rapela, C. W. 1991. The magmatic evolution of northern Patagonia. New impressions of pre-Andean and Andean tectonics. In Andean Magmatism and its tectonic setting (eds Harmon, R. S. & Rapela, C. W.), pp. 2944. Geological Society of America, Special Paper no. 265.CrossRefGoogle Scholar
Cobbold, P. R., Gapais, D., Rossello, E. R., Milani, E. J. & Szatmari, P. 1992. Permo-Triassic intracontinental deformation in SW Gondwana. In Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (eds de Wit, M. J. & Ransome, I. G. D.), pp. 23–6. Rotterdam/Brookfield: Balkema.Google Scholar
Cucchi, R. J. 1993. La Formación Lipetrén en el marco del Gondwana: sector occidental del Macizo Nordpatagónico. XII. Congreso Geológico Argentino y II. Congreso de Exploración de Hidrocarburos (Mendoza), Actas IV, 105–22.Google Scholar
Dalla Salda, L., Cingolani, C. A. & Varela, R. 1990. El basamento de la region occidental del Macizo Norpatagónico, Argentina. XI. Congreso Geológico Argentino (San Juan), Actas II, 1114.Google Scholar
Dalla Salda, L. H., Cingolani, C. & Varela, R. 1992. Early Paleozoic orogenic belt of the Andes in southwestern South America: Result of Laurentia–Gondwana collision? Geology 20, 617–20.2.3.CO;2>CrossRefGoogle Scholar
Dalla Salda, L., Cingolani, C. & Varela, R. 1993. A pre-Carboniferous tectonic model in the evolution of southern South America. Comptes Rendus 12th International Congress on Carboniferous–Permian (Buenos Aires) 1, 371–84.Google Scholar
Dalla Salda, L. H., Dalziel, I. W. D., Cingolani, C. A. & Varela, R. 1992. Did Taconic Appalachians continue into southern South America? Geology 20, 1059–62.2.3.CO;2>CrossRefGoogle Scholar
Dalla Salda, L. H., Varela, R., Cingolani, C. & Aragón, E. 1994. The Rio Chico Paleozoic Crystalline Complex and the evolution of Northern Patagonia. Journal of South American Earth Sciences 7 (3/4), 377–86.Google Scholar
Dalziel, I. W. D. & Grunow, A. M. 1992. Late Gondwanide tectonic rotations within Gondwanaland. Tectonics 11 (3), 603–6.CrossRefGoogle Scholar
Davidson, J., Mpodozis, C., Godoy, E., Hervé, F., Pankhurst, R. & Brook, M. 1987. Late Paleozoic accretionary complexes on the Gondwana margin of southern Chile: evidence from the Chonos Archipelago. In Gondwana Six: Structure, Tectonics, and Geophysics (ed. G. D. McKenzie), pp.221–7. Geophysical Monograph no. 40.Google Scholar
De Wit, M. J. & Ransome, I. G. D. 1992. Regional inversion tectonics along the southern margin of Gondwana. In Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (eds De Wit, M. J. & Ransome, I. G. D.), pp. 1521. Rotterdam/Brookfield: Balkema.Google Scholar
Duhart, P., Haller, M. & Hervé, F. 2002. Diamictitas como parte del protolito de las metamorfitas de la Formación Cushamen en Río Chico, Provincias de Río Negro y Chubut, Argentina. XV. Congreso Geológico Argentino (El Calafate), Actas II, 97100.Google Scholar
Fang, Z.-J., Boucot, A., Covacevich, V. & Hervé, F. 1998. Discovery of Late Triassic fossils in the Chonos Metamorphic Complex, southern Chile. Revista Geológica de Chile 25 (2), 165–73.CrossRefGoogle Scholar
Forsythe, R. 1982. The late Palaeozoic to early Mesozoic evolution of southern South America: a plate tectonic interpretation. Journal of the Geological Society, London 139, 671–82.Google Scholar
Franzese, J., Dias, G. & Dalla Salda, L. H. 1992. Las estructuras de las metamorfitas Cushamen, Provincia de Chubut. VI. Reunión sobre Microtectónica, Monografías de la Academía Nacional de Ciencias Exactas, Físicas y Naturales (Buenos Aires) 8, 2730.Google Scholar
Franzese, J. R., Pankhurst, R. J., Rapela, C. W., Spalletti, L. A., Fanning, M. & Muravchik, M. 2002. Nuevas evidencias geocronológicas sobre el magmatismo gondwánico en el noroeste del Macizo Norpatagónico. XV. Congreso Geológico Argentino (El Calafate), Actas I, 144–8.Google Scholar
Geuna, S. E., Somoza, R., Vizán, H., Figari, E. G. & Rinaldi, C. A. 2000. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana? Earth and Planetary Science Letters 181 (1–2), 145–60.Google Scholar
Giacosa, R. E. & Heredia, N. 2004. Structure of the North Patagonian thick-skinned fold-and-thrust belt, southern central Andes, Argentina (41°–42°S). Journal of South American Earth Sciences 18, 6172.CrossRefGoogle Scholar
Giacosa, R., Heredia, N., Zubia, M. & González, R. 1999 a. Hoja Geológica San Carlos de Bariloche, 4172-IV, 1:250000. Viedma: Proyecto Minero Río Negro, Dirección de Minería Provincia de Río Negro – SEGEMAR.Google Scholar
Giacosa, R., Heredia, N., Césari, O., Zubia, M. & González, R. 1999 b. Geología y Recursos Minerales del sector rionegrino del las Hojas 4172-IV, San Carlos de Bariloche y 4172-II, San Martín de los Andes. Información Geológico Minera de La Provincia de Río Negro, Convenio Dirección de Minería de Río Negro – SEGEMAR, pp. 1–106.Google Scholar
González, P., Coluccia, A., Franchi, M., Caba, R. & Dalponte, M. 2002. Carta Geológica de la República Argentina, 1:250000, Ingeniero Jacobacci, 4169-III (Edición Cartográfica Preliminar). Buenos Aires: SEGEMAR, Instituto de Geología y Recursos Minerales.Google Scholar
González, P. D., Poiré, D. G. & Varela, R. 2002. Hallazgo de trazas fósiles en la Formación El Jagüelito y su relación con la edad de los metasedimentitas, Macizo Nordpatagónico Oriental, provincia de Río Negro. Revista de la Asociación Geológica Argentina 57 (1), 3544.Google Scholar
Gosen, W. von. 2003. Thrust tectonics in the North Patagonian Massif (Argentina): Implications for a Patagonia plate. Tectonics 22 (1), 51–33.Google Scholar
Gosen, W. von. 2005. Polyphase deformation and magmatism in the western part of the North Patagonian Massif (Río Negro Province, Argentina). XVI. Congreso Geológico Argentino (La Plata), Actas I, 251–2.Google Scholar
Gosen, W. von, Buggisch, W. & Dimieri, L. V. 1990. Structural and metamorphic evolution of the Sierras Australes (Buenos Aires Province/Argentina). Geologische Rundschau 79 (3), 797821.Google Scholar
Gosen, W. von & Loske, W. 2004. Tectonic history of the Calcatapul Formation, Chubut Province, Argentina, and the Gastre Fault System. Journal of South American Earth Sciences 18, 7388.Google Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W. & Lourens, L. J. 2004. A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27 (2), 83100.CrossRefGoogle Scholar
Hervé, F. 1988. Late Paleozoic subduction and accretion in southern Chile. Episodes 11 (3), 183–8.CrossRefGoogle Scholar
Hervé, F. & Fanning, C. M. 2001. Late Triassic detrital zircons in meta-turbidites of the Chonos Metamorphic Complex, southern Chile. Revista Geológica de Chile 28 (1), 91104.CrossRefGoogle Scholar
Hervé, F., Haller, M. J., Duhart, P. & Fanning, C. M. 2005. SHRIMP U–Pb ages of detrital zircons from Cushamen and Esquel Formations, North Patagonian Massif, Argentina: geological implications. XVI. Congreso Geológico Argentino (La Plata), Actas I, 309–14.Google Scholar
Hoeppener, R. 1955. Tektonik im Schiefergebirge. Geologische Rundschau 44, 2658.Google Scholar
Linares, E., Cagnoni, M. C., Do Campo, M. & Ostera, H. A. 1988. Geochronology of metamorphic and eruptive rocks of southeastern Neuquén and northwestern Río Negro Provinces, Argentine Republic. Journal of South American Earth Sciences 1 (1), 5361.Google Scholar
Linares, E., Haller, M. J., Ostera, H. A., Cagnoni, M. C. & Galante, G. 1997. Radiometric ages of the crystalline basement of the Río Chico region, Ñorquinco department, Río Negro Province, Argentina. South-American Symposium on Isotope Geology. Sao Paulo, Brazil, June 15–18, 1997: Extended Abstracts, 170–5.Google Scholar
Llambías, E. J., Llano, J. A., Rossa, N., Castro, C. E. & Puigdomenech, H. H. 1984. Petrografía de la Formación Mamil Choique en la Sierra del Medio – Departamento Cushamen – Provincia del Chubut. IX. Congreso Geológico Argentino (San Carlos de Bariloche), Actas 2, 554–67.Google Scholar
Llambías, E. J., Varela, R., Basei, M. & Sato, A. M. 2002. Deformación y metamorfismo neopaleozoico en Yaminué, Macizo Norpatagónico (40°50′ S, 67°40′ W): su relación con la fase orogénica San Rafael y el arco de los Gondwanides. XV. Congreso Geológico Argentino (El Calafate), Actas III, 123–8.Google Scholar
López de Luchi, M. G. 1994. Geología de las unidades plutonicas del Macizo Nordpatagónico en la zona de Río Chico – Mamil Choique, Provincia de Río Negro, República Argentina. 7. Congreso Geológico Chileno (Concepción), Actas 1, 91–5.Google Scholar
López de Luchi, M. G. & Cerredo, M. E. 1996. Metamorphism, deformation and related magmatism in Río Chico area. North Patagonian Massif. XIII. Congreso Geológico Argentino y III. Congreso de Exploración de Hidrocarburos (Buenos Aires), Actas V, p. 533.Google Scholar
López de Luchi, M. G., Cerredo, M. E., Wemmer, K. & Pawling, S. 2005. Cooling and Nd model ages of the Devonian to Late Paleozoic units of the SW corner of the North Patagonian Massif. XVI. Congreso Geológico Argentino (La Plata), Actas I, 273–8.Google Scholar
López de Luchi, M. G., Ostera, H., Cerredo, M. E., Cagnoni, M. C. & Linares, E. 2000. Permian magmatism in Sierra de Mamil Choique, North Patagonian Massif, Argentina. IX. Congreso Geológico Chileno, Actas 2 (4), 750–4.Google Scholar
López de Luchi, M., Ostera, H., Cerredo, M. E., Linares, E., Haller, M. J. & Cagnoni, M. C. 1999. Unravelling the ages of the crystalline basement at Sierra de Mamil Choique, Río Negro, Argentine. II. South American Symposium on Isotope Geology (Villa Carlos Paz/Córdoba), Actas, 322–6.Google Scholar
Lucassen, F., Trumbull, R., Franz, G., Creixell, C., Vásquez, P., Romer, R. L. & Figueroa, O. 2004. Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36–41°S). Journal of South American Earth Sciences 17, 103–19.CrossRefGoogle Scholar
Márquez, M., Giacosa, R., Nillni, A., Paredes, J., Fernández, M., Parisi, C., Sciutto, J., Garrido, C. & Afonso, J. 2002. Aspectos litológicos y estructurales del bloque tectónico Cushamen (Chubut). XV. Congreso Geológico Argentino (El Calafate), Actas I, 201–6.Google Scholar
Martin, M. W., Kato, T. T., Rodriguez, C., Godoy, E., Duhart, P., McDonough, M. & Campos, A. 1999. Evolution of the Late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°–41°S): Constraints for the tectonic setting along the southwestern Gondwana margin. Tectonics 18 (4), 582605.Google Scholar
Nullo, F. E. 1978. Descripción Geológica de la Hoja 41 d, Lipetrén, Provincia de Río Negro. Carta Geológico-Económica de la República Argentina, Escala 1:200.000. Servicio Geológico Nacional, Boletín 158, 188.Google Scholar
Nullo, F. E. 1979. Descripción Geológica de la Hoja 39 c, Paso Flores, Provincia de Río Negro. Carta Geológico-Económica de la República Argentina, Escala 1:200.000. Servicio Geológico Nacional, Boletín 167, 170.Google Scholar
Ostera, H. A., Linares, E., Haller, M. J., Cagnoni, M. C. & López de Luchi, M. 2001. A widespread Devonian metamorphic episode in northern Patagonia, Argentina. III. South American Symposium on Isotope Geology. Santiago: Sociedad Geológica de Chile, Extended Abstracts Volume (CD), 600–3.Google Scholar
Pankhurst, R. J., Hervé, F., Rojas, L. & Cembrano, J. 1992. Magmatism and tectonics in continental Chiloé, Chile (42°–42°30′S). Tectonophysics 205, 283–94.Google Scholar
Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Márquez, M. 2005. Gondwanide continental collision and the origin of Patagonia. In Gondwana 12: Geological and Biological Heritage of Gondwana (eds Pankhurst, R. J. & Veiga, G. D.), p. 281. Córdoba, Argentina: Academia Nacional de Ciencias, Abstracts.Google Scholar
Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Márquez, M. 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76 (3–4), 235–57.Google Scholar
Proserpio, C. A. 1978. Descripción Geológica de la Hoja 42 d, Gastre, Provincia del Chubut. Carta Geológico-Económica de la República Argentina, Escala 1:200.000. Servicio Geológico Nacional, Boletín 159, 175.Google Scholar
Ramos, V. A. 1984. Patagonia: ¿Un continente Paleozoico a la deriva? IX. Congreso Geológico Argentino (San Carlos de Bariloche), Actas II, 311–25.Google Scholar
Ramos, V. A. 1986. Tectonostratigraphy, as applied to analysis of South African Phanerozoic basins by H. De La R. Winter – Discussion. Transactions Geological Society of South Africa 89, 427–9.Google Scholar
Ramos, V. A. 2005. The Proterozoic–Early Palaeozoic margin of western Gondwana. In Gondwana 12: Geological and Biological Heritage of Gondwana (eds Pankhurst, R. J. & Veiga, G. D.), p. 304. Córdoba, Argentina: Academia Nacional de Ciencias, Abstracts.Google Scholar
Ramos, V. A., Riccardi, A. C. & Rolleri, E. O. 2004. Límites naturales del norte de la Patagonia. Revista de la Asociación Geológica Argentina 59 (4), 785–6.Google Scholar
Rapalini, A. E. 1998. Syntectonic magnetization of the mid-Palaeozoic Sierra Grande Formation: further constraints on the tectonic evolution of Patagonia. Journal of the Geological Society, London 155, 105–14.Google Scholar
Rapalini, A. 2005. The accretional history of southern South America from the Late Proterozoic to the Late Paleozoic: a paleomagnetic perspective. In Gondwana 12: Geological and Biological Heritage of Gondwana (eds Pankhurst, R. J. & Veiga, G. D.), p. 305. Córdoba, Argentina: Academia Nacional de Ciencias, Abstracts.Google Scholar
Rapalini, A. E., Tarling, D. H., Turner, P., Flint, S. & Vilas, J. F. 1994. Paleomagnetism of the Carboniferous Tepuel Group, central Patagonia, Argentina. Tectonics 13 (5), 1277–94.CrossRefGoogle Scholar
Rapela, C. W., Dias, G. F., Franzese, J. R., Alonso, G. & Benvenuto, A. R. 1991. El batolito de la Patagonia central: evidencias de un magmatismo triasico-jurasico asociado a fallas transcurrentes. Revista Geológica de Chile 18 (2), 121–38.Google Scholar
Rapela, C. W., Pankhurst, R. & Harrison, S. M. 1992. Triassic Gondwana granites of the Gastre district, North Patagonian Massif. Transactions of the Royal Society of Edinburgh, Earth Sciences 83, 291304.Google Scholar
Ravazzoli, I. A. & Sesana, F. L. 1977. Descripción Geológica de la Hoja 41 c, Río Chico, Provincia de Río Negro. Carta Geológico-Económica de la República Argentina, Escala 1:200.000. Servicio Geológico Nacional, Boletín 148, 177.Google Scholar
Sellés Martínez, J. 1989. The structure of the Sierras Australes (Buenos Aires Province, Argentina): An example of folding in a transpressive environment. Journal of South American Earth Sciences 2 (4), 317–29.CrossRefGoogle Scholar
Tickyj, H., Dimieri, L. V., Llambías, E. J. & Sato, A. M. 1997. Cerro de Los Viejos (38° 28′ S – 64° 26′ O): cizallamiento dúctil en el sudeste de La Pampa. Revista de la Asociación Geológica Argentina 52 (3), 311–21.Google Scholar
Tickyj, H. & Llambías, E. 1994. El gneis milonítico del Cerro de los Viejos (38° 28′S – 64° 26′O), Provincia de La Pampa, Argentina. ¿Evidencia de un corrimiento en el Carbonífero inferior? 7. Congreso Geológico Chileno (Concepción), Actas II, 1239–43.Google Scholar
Trouw, R. A. J. & De Wit, M. J. 1999. Relation between the Gondwanide Orogen and contemporaneous intracratonic deformation. Journal of African Earth Sciences 28 (1), 203–13.CrossRefGoogle Scholar
Urien, C. M. & Zambrano, J. J. 1996. Estructura del margen continental. In Geología y Recursos Naturales de la Plataforma Continental Argentina (eds V. A. Ramos & M. A. Turic), pp. 29–65. XIII. Congreso Geológico Argentino y III. Congreso de Exploración de Hidrocarburos (Buenos Aires), Relatorio no. 3. Buenos Aires.Google Scholar
Varela, R., Basei, M. A. S., Brito Neves, B. B., Sato, A. M., Teixeira, W., Cingolani, C. & Siga, O. 1999. Isotopic study of igneous and metamorphic rocks of Comallo–Paso Flores, Río Negro, Argentina. II. South American Symposium on Isotope Geology (Villa Carlos Paz/Córdoba), Actas, 148–51.Google Scholar
Varela, R., Basei, M. A. S., Cingolani, C. A., Siga Jr, O. & Passarelli, C. R. 2005. El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica. Revista Geológica de Chile 32 (2), 167–87.CrossRefGoogle Scholar
Varela, R., Basei, M. A. S., Sato, A. M., Siga Jr, O., Cingolani, C. A. & Sato, K. 1998. Edades isotopicas Rb/Sr y U/Pb en rocas de Mina Gonzalito y Arroyo Salado. Macizo Norpatagónico Atlantico, Río Negro, Argentina. X. Congreso Latinoamericano de Geología y VI. Congreso Nacional de Geología Económica (Buenos Aires), Actas I, 71–6.Google Scholar
Varela, R., Cingolani, C., Sato, A., Dalla Salda, L., Brito Neves, B. B., Basei, M. A. S., Siga Jr, O. & Teixeira, W. 1997. Proterozoic and Paleozoic evolution of Atlantic area of North-Patagonian Massif, Argentine. South-American Symposium on Isotope Geology (Sao Paulo/Brazil, June 15–18, 1997), Extended Abstracts 326, p. 329.Google Scholar
Varela, R., Dalla Salda, L., Cingolani, C. & Gómez, V. 1991. Estructura, petrología y geocronología del basamento de la región del Limay, Provincias de Río Negro y Neuquén, Argentina. Revista Geológica de Chile 18 (2), 147–63.Google Scholar
Vizán, H., Somoza, R. & Taylor, G. 2005. Paleomagnetically testing the behaviour of Patagonia during Gondwana break-up. In Gondwana 12: Geological and Biological Heritage of Gondwana (eds Pankhurst, R. J. & Veiga, G. D.), p. 368. Córdoba, Argentina: Academia Nacional de Ciencias, Abstracts.Google Scholar
Volkheimer, W. 1964. Estratigrafía de la zona extrandina del Departamento de Cushamen (Chubut) entre los paralelos 42° y 42°30′ y los meridianos 70° y 71°. Revista de la Asociación Geológica Argentina 19 (2), 85107.Google Scholar
Volkheimer, W. & Lage, J. 1981. Descripción Geológica de la Hoja 42 c, Cerro Mirador, Provincia del Chubut. Carta Geológico-Económica de la República Argentina, Escala 1:200.000. Servicio Geológico Nacional, Boletín 181, 171.Google Scholar