Skip to main content Accessibility help

The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic – Lower Triassic), Korea

  • MUN GI KIM (a1), YONG IL LEE (a1), TAEJIN CHOI (a2) and YUJI ORIHASHI (a3)


The upper Palaeozoic succession (Pyeongan Supergroup) in central eastern Korea is well correlated with the equivalent successions distributed in North China, suggestive of the Korean upper Palaeozoic being part of the Sino-Korean Block. Detrital zircon U–Pb ages and Sm–Nd isotope compositions of the Pyeongan Supergroup in the Samcheok coalfield of the Taebaeksan Basin were analysed. A single predominant zircon age peak at c. 1.9 Ga (> 70%) is marked in all sedimentary units, followed by varying amounts of minor late Palaeozoic grains (up to 30%). The rarity of Meso- to Neoproterozoic- and Silurian-aged zircons confirms that sediment influx from the South China and Qinling blocks was insignificant. The 2.0–1.8 Ga-dominated zircon age pattern and the Nd isotope composition (average εNd(0) = −15.5±4.0) of the Pyeongan Supergroup most closely reflect the signature of the Yeongnam Massif basements, which supports a previous hypothesis that the Pyeongan Supergroup was mostly derived from a palaeo-orogen located to the east–southeast. Relatively higher εNd(0) values (> −10.1) in the lowermost and the upper parts of the succession are closely matched by the increased occurrence of syn-depositional-aged zircons, which indicates considerable mixing of juvenile materials at c. 320 Ma and 260 Ma. Both arc-related magmatic events are interpreted to have been related to oceanic subduction, suggesting that the eastern margin of the Sino-Korean Block was an active continental margin during late Palaeozoic times.


Corresponding author

Author for correspondence:


Hide All
Arakawa, Y., Saito, Y. & Amakawa, H. 2000. Crustal development of the Hida belt, Japan: evidence from Nd–Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics 328, 183204.
Bock, B., McLennan, S. M. & Hanson, G. N. 1994. Rare earth element redistribution and its effects on the neodymium isotope system in the Austin Glen Member of the Normanskill Formation, New York, USA. Geochimica et Cosmochimica Acta 58, 5245–53.
Chang, K.-H. & Zhao, X. 2012. North and South China suturing in the east end: what happened in Korean Peninsula? Gondwana Research 22, 493506.
Cheong, C. H. 1969. Stratigraphy and paleontology of the Samcheog Coalfield, Gangweondo, Korea (Ⅰ). Journal of the Geological Society of Korea 5, 1355.
Cheong, C. H. 1973. A paleontological study of the fusulinids from the Samcheog Coalfield. Journal of the Geological Society of Korea 9, 4788 (in Korean with English abstract).
Cheong, C.-S., Jo, H. J., Jeong, Y.-J., Park, C.-S. & Cho, M. 2016. Geochemical and Sr–Nd isotopic constraints on the petrogenesis of the Goesan monzodiorite pluton in the central Okcheon belt, Korea. Island Arc 25, 4354.
Cheong, C.-S., Kim, N., Kim, J., Yi, K., Jeong, Y.-J., Park, C.-S., Li, H.-K. & Cho, M. 2014. Petrogenesis of Late Permian sodic metagranitoids in southeastern Korea: SHRIMP zircon geochronology and elemental and Nd–Hf isotope geochemistry. Journal of Asian Earth Sciences 95, 228–42.
Cheong, C.-S., Yi, K., Kim, N., Lee, T.-H., Lee, S. R., Geng, J.-Z. & Li, H.-K. 2013. Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova 25, 228–35.
Choi, D. K. & Kim, E. Y. 2006. Occurrence of Changshania (Trilobita, Cambrian) in the Taebaeksan Basin, Korea and its stratigraphic and paleogeographic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 242, 343–54.
Choi, D. K., Kim, D. H. & Sohn, J. W. 2001. Ordovician trilobite faunas and depositional history of the Taebaeksan Basin, Korea: implications for palaeogeography. Alcheringa: An Australasian Journal of Palaeontology 25, 5368.
Choi, T., Lee, Y. I. & Orihashi, Y. 2016. Crustal growth history of the Korean Peninsula: constraints from detrital zircon ages in modern river sediments. Geoscience Frontiers 7, 707–14.
Chough, S. K., Kwon, S.-T., Ree, J.-H. & Choi, D. K. 2000. Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews 52, 175235.
Chun, H. Y. 1985. Permo-Carboniferous plant fossils from the Samcheok coalfield, Gangweondo, Korea Part 1. Journal of Paleontological Society of Korea 1, 95122.
Chun, H. Y. 1987. Permo-Carboniferous plant fossils from the Samcheog coalfield, Gangweondo, Korea Part 2. Journal of Paleontological Society of Korea 3, 127.
Cope, T., Ritts, B. D., Darby, B. J., Fildani, A. & Graham, S. A. 2005. Late Paleozoic sedimentation on the Northern Margin of the North China Block: implications for regional tectonics and climate change. International Geology Review 47, 270–96.
Dan, W., Li, X.-H., Wang, Q., Wang, X.-C., Wyman, D. A. & Liu, Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research 32, 105–21.
Darby, B. J. & Gehrels, G. 2006. Detrital zircon reference for the North China block. Journal of Asian Earth Sciences 26, 637–48.
Ding, L.-X., Ma, C.-Q., Li, J.-W., Robinson, P. T., Deng, X.-D., Zhang, C. & Xu, W.-C. 2011. Timing and genesis of the adakitic and shoshonitic intrusions in the Laoniushan complex, southern margin of the North China Craton: implications for post-collisional magmatism associated with the Qinling Orogen. Lithos 126, 212–32.
Doh, S.-J. & Piper, J. D. A. 1994. Palaeomagnetism of the (Upper Palaeozoic-Lower Mesozoic) Pyongan Supergroup, Korea: a Phanerozoic link with the North China Block. Geophysical Journal International 117, 850–63.
Domeier, M. & Torsvik, T. H. 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5, 303–50.
Dong, Y., Liu, X., Neubauer, F., Zhang, G., Tao, N., Zhang, Y., Zhang, X. & Li, W. 2013. Timing of Paleozoic amalgamation between the North China and South China Blocks: evidence from detrital zircon U–Pb ages. Tectonophysics 586, 173–91.
Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J. & Hauzenberger, C. 2011. Tectonic evolution of the Qinling orogen, China: review and synthesis. Journal of Asian Earth Sciences 41, 213–37.
Ehiro, M., Tsujimori, T., Tsukada, K. & Nuramkhaan, M. 2016. Palaeozoic basement and associated cover. In The Geology of Japan (eds Moreno, T., Wallis, S., Kojima, T. & Gibbons, W.), pp. 2560. London: Geological Society of London.
Hirata, T., Iizuka, T. & Orihashi, Y. 2005. Reduction of mercury background on ICP-mass spectrometry for in situ U–Pb age determinations of zircon samples. Journal of Analytical Atomic Spectrometry 20, 696701.
Horie, K., Yamashita, M., Hayasaka, Y., Katoh, Y., Tsutsumi, Y., Katsube, A., Hidaka, H., Kim, H. & Cho, M. 2010. Eoarchean–Paleoproterozoic zircon inheritance in Japanese Permo-Triassic granites (Unazuki area, Hida Metamorphic Complex): unearthing more old crust and identifying source terranes. Precambrian Research 183, 145–57.
Hoskin, P. W. O. & Black, L. P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18, 423–39.
Hu, L., Cawood, P. A., Du, Y., Xu, Y., Xu, W. & Huang, H. 2015a. Detrital records for Upper Permian–Lower Triassic succession in the Shiwandashan Basin, South China and implication for Permo-Triassic (Indosinian) orogeny. Journal of Asian Earth Sciences 98, 152–66.
Hu, L., Cawood, P. A., Du, Y., Yang, J. & Jiao, L. 2015b. Late Paleozoic to Early Mesozoic provenance record of Paleo-Pacific subduction beneath South China. Tectonics 34, 9861008.
Hu, L., Du, Y., Cawood, P. A., Xu, Y., Yu, W., Zhu, Y. & Yang, J. 2014. Drivers for late Paleozoic to early Mesozoic orogenesis in South China: Constraints from the sedimentary record. Tectonophysics 618, 107–20.
Ishiwatari, A. & Tsujimori, T. 2003. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: a synthesis. Island Arc 12, 190206.
Jeong, H. & Lee, Y. I. 2000. Late Cambrian biogeography: conodont bioprovinces from Korea. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 119–36.
Jeong, H. & Lee, Y. I. 2004. Nd isotopic study of Upper Cambrian conodonts from Korea and implications for early Paleozoic paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 212, 7794.
Jian, P., Liu, D., Kröner, A., Windley, B. F., Shi, Y., Zhang, W., Zhang, F., Miao, L., Zhang, L. & Tomurhuu, D. 2010. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118, 169–90.
Kim, H. M. 1971. Paleozoic and Mesozoic paleocurrents of the Danyang coalfield district, Korea. Journal of the Geological Society of Korea 7, 257–76.
Kim, J. H., Lee, Y. I., Li, M. & Bai, Z. 2001. Comparison of the Ordovician-Carboniferous boundary between Korea and NE China: implications for correlation and tectonic evolution. Gondwana Research 4, 3953.
Kim, H. S., Ree, J.-H. & Kim, J. 2012. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Sciences 101, 483–98.
Kim, H. S., Seo, B. & Yi, K. 2014. Medium temperature and lower pressure metamorphism and tectonic setting of the Pyeongan Supergroup in the Munkyeong Area. The Journal of the Petrological Society of Korea 23, 311–24 (in Korean in English abstract).
Korea Institute of Geoscience and Mineral Resources (KIGAM). 1979. Geological Atlas of the Samcheog Coalfield, 1: 25,000 and Geology of the Samcheog Coalfield (Explanatory text), edited.
Korea Institute of Geoscience and Mineral Resources (KIGAM). 1995. Geological Map of Korea (1: 1,000,000), edited.
Lee, Y. I. 1990. Absence of feldspar in Carboniferous Manhang (Samcheog Coalfield) and Yobong Sandstones, Korea. Journal of the Geological Society of Korea 26, 63–9.
Lee, Y. I. 2002. Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology 149, 219–35.
Lee, S.-R. & Cho, K.-O. 2012. Precambrian crustal evolution of the Korean Peninsula. The Journal of the Petrological Society of Korea 21, 89112 (in Korean with English abstract).
Lee, Y., Cho, M., Cheong, W. & Yi, K. 2014a. A massif-type (~1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova 26, 408–16.
Lee, S. R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. & Kim, J. C. 2003. Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research 121, 2534.
Lee, Y. I., Choi, T., Lim, H. S. & Orihashi, Y. 2010. Detrital zircon geochronology of the Cretaceous Sindong Group, Southeast Korea: implications for depositional age and Early Cretaceous igneous activity. Island Arc 19, 647–58.
Lee, Y. I., Choi, T. & Orihashi, Y. 2012. Depositional ages of upper Pyeongan Supergroup strata in the Samcheok coalfield, eastern central Korea. Journal of the Geological Society of Korea 48, 93–9 (in Korean with English abstract).
Lee, S.-G., Kim, T.-K. & Lee, T.-J. 2011. Rare Earth Element, Sm–Nd and Rb–Sr age and its geochemical implication of leucogranite in the Deokgu Hot Spring Area, Yeongnam Massif, Korea. The Journal of the Petrological Society of Korea 20, 207–17 (in Korean in English abstract).
Lee, Y. I. & Lee, J. I. 2003. Paleozoic sedimentation and tectonics in Korea: a review. Island Arc 12, 162–79.
Lee, Y. I. & Lim, C. 1995. Provenance and compositional variance of the Carboniferous Manhang sandstones, central eastern Korea. Journal of the Geological Society of Korea 31, 637–52.
Lee, Y. I. & Sheen, D.-H. 1998. Detrital modes of the Pyeongan Supergroup (Late Carboniferous–Early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting. Sedimentary Geology 119, 219–38.
Lee, T.-H., Yi, K., Cheong, C.-S., Jeong, Y.-J., Kim, N. & Kim, M.-J. 2014b. SHRIMP U–Pb zircon geochronology and geochemistry of drill cores from the Pohang basin. The Journal of the Petrological Society of Korea 23, 167–85 (in Korean with English abstract).
Li, H.-Y., He, B., Xu, Y.-G. & Huang, X.-L. 2010. U–Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: insights into interactions of the North China Craton with surrounding plates. Journal of Asian Earth Sciences 39, 335–46.
Li, X.-H., Li, Z.-X., He, B., Li, W.-X., Li, Q.-L., Gao, Y. & Wang, X.-C. 2012. The Early Permian active continental margin and crustal growth of the Cathaysia Block: in situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons. Chemical Geology 328, 195207.
Li, Z., Peng, S.-T., Xu, C.-W., Han, Y.-X. & Zhai, M.-G. 2009. U–Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Tabeaksan basin, Korea. Acta Petrologica Sinica 25, 182–92 (in Chinese with English abstract).
Lu, S., Zhao, G., Wang, H. & Hao, G. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Research 160, 7793.
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4.
Lv, D. & Chen, J. 2014. Depositional environments and sequence stratigraphy of the Late Carboniferous−Early Permian coal-bearing successions (Shandong Province, China): sequence development in an epicontinental basin. Journal of Asian Earth Sciences 79, 1630.
Ma, S., Meng, Q., Duan, L. & Wu, G. 2014. Reconstructing Late Paleozoic exhumation history of the Inner Mongolia Highland along the northern edge of the North China Craton. Journal of Asian Earth Sciences 87, 89101.
McDaniel, D. K., Hemming, S. R., McLennan, S. M. & Hanson, G. N. 1994. Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: the Early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario, Canada. Geochimica et Cosmochimica Acta 58, 931–41.
McLennan, S. M. & Hemming, S. 1992. Samarium/neodymium elemental and isotopic systematics in sedimentary rocks. Geochimica et Cosmochimica Acta 56, 887–98.
Metcalfe, I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 133.
Park, S.-I. 1989. Conodont biostratigraphy of the Pyeongan Supergroup in Sabuk-Gohan area. Journal of the Geological Society of Korea 25, 192201 (in Korean with English abstract).
Park, S.-I. & Sun, Y. 2014. Neuropterid fossil plants from the basal part of the Middle Carboniferous Manhang Formation in the Taebaek area, Korea and their significance. Geosciences Journal 19, 1724.
Song, Y.-S., Lee, H.-S., Park, K.-H., Fitzsimons, I. C. W. & Cawood, P. A. 2015. Recognition of the Phanerozoic “young granite gneiss” in the central Yeongnam massif. Geosciences Journal 19, 116.
Stacey, J. S., & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.
Takahashi, Y., Cho, D.-L. & Kee, W.-S. 2010. Timing of mylonitization in the Funatsu Shear Zone within Hida Belt of southwest Japan: implications for correlation with the shear zones around the Ogcheon Belt in the Korean Peninsula. Gondwana Research 17, 102–15.
Tsutsumi, Y., Isozaki, Y. & Terabayashi, M. 2017. The most continent-sided occurrence of the Phanerozoic subduction-related orogens in SW Japan: zircon U–Pb dating of the Mizoguchi gneiss on the western foothill of Mt. Daisen volcano in Tottori. Journal of Asian Earth Sciences 145, 530–41.
Vermeesch, P. 2012. On the visualisation of detrital age distributions. Chemical Geology 312, 190–4.
Walker, J. D., Geissman, J. W., Bowring, S. A. & Babcock, L. E. 2012. Geologic Time Scale v. 4.0. Boulder, Colorado: Geological Society of America.
Wang, Q., Deng, J., Liu, X., Zhao, R. & Cai, S. 2016. Provenance of Late Carboniferous bauxite deposits in the North China Craton: new constraints on marginal arc construction and accretion processes. Gondwana Research 38, 8698.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards and Geoanalytical Research 19, 123.
Wu, Y.-B. & Zheng, Y.-F. 2013. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China. Gondwana Research 23, 1402–28.
Yang, J., Wu, F., Shao, J., Wilde, S., Xie, L. & Liu, X. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246, 336–52.
Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J. & Cho, M. 2012. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos 153, 129–41.
Yu, K.-M. & Lee, E.-S. 1993. Mineral assemblages and heavy minerals of sandstones from the Pyeongan Group in Taeback area, Korea. Journal of the Sedimentological Society of Japan 39, 6983.
Yu, K.-M., Lee, G.-H. & Boggs, S. 1997. Petrology of late Paleozoic-early Mesozoic Pyeongan Group sandstones, Gohan area, South Korea and its provenance and tectonic implications. Sedimentary Geology 109, 321–38.
Yuan, W. & Yang, Z. 2015. The Alashan Terrane did not amalgamate with North China block by the Late Permian: evidence from Carboniferous and Permian paleomagnetic results. Journal of Asian Earth Sciences 104, 145–59.
Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q. & Fan, Q. 2007. Linking the Sulu UHP belt to the Korean Peninsula: evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research 12, 388403.
Zhai, M., Hu, B., Zhao, T., Peng, P. & Meng, Q. 2015. Late Paleoproterozoic–Neoproterozoic multi-rifting events in the North China Craton and their geological significance: a study advance and review. Tectonophysics 662, 153–66.
Zhang, J., Zhang, B. & Zhao, H. 2016. Timing of amalgamation of the Alxa Block and the North China Block: constraints based on detrital zircon U–Pb ages and sedimentologic and structural evidence. Tectonophysics 668–669, 6581.
Zhang, S.-H., Zhao, Y., Song, B., Hu, J.-M., Liu, S.-W., Yang, Y.-H., Chen, F.-K., Liu, X.-M. & Liu, J. 2009. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin 121, 181200.
Zhao, X., Mao, J., Ye, H., Liu, K. & Takahashi, Y. 2013a. New SHRIMP U–Pb zircon ages of granitic rocks in the Hida Belt, Japan: implications for tectonic correlation with Jiamushi massif. Island Arc 22, 508–21.
Zhao, Z., Wang, D.-H., Li, P.-G. & Lei, Z.-Y. 2013 b. Detrital zircon U–Pb geochronology of Dazhuyuan formation in northern Guizhou: implications for bauxite mineralization. Rock and Mineral Analysis 32, 166–73 (in Chinese with English abstract).
Zhou, J. B., & Wilde, S. A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research 23, 1365–77.
Zhu, X.-Q., Zhu, W.-B., Ge, R.-F. & Wang, X. 2014. Late Paleozoic provenance shift in the south-central North China Craton: implications for tectonic evolution and crustal growth. Gondwana Research 25, 383400.


Type Description Title
Supplementary materials

Kim et al supplementary material
Table S1

 Unknown (512 KB)
512 KB

The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic – Lower Triassic), Korea

  • MUN GI KIM (a1), YONG IL LEE (a1), TAEJIN CHOI (a2) and YUJI ORIHASHI (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed