Skip to main content

Testing the early Late Ordovician cool-water hypothesis with oxygen isotopes from conodont apatite


Latest Sandbian to early Katian sequences across Laurentia's epicontinental sea exhibit a transition from lithologies characterized as ‘warm-water’ carbonates to those characterized as ‘cool-water'carbonates. This shift occurs across the regionally recognized M4/M5 sequence stratigraphic boundary and has been attributed to climatic cooling and glaciation, basin reorganization and upwelling of open ocean water, and/or increased water turbidity and terrigenous input associated with the Taconic tectophase. Documentation of oxygen isotopic trends across the M4/M5 and through bracketing strata provides a potential means of distinguishing among these alternative scenarios; however, oxygen isotopic records generated to date have failed to settle the debate. This lack of resolution is because δ18O records are open to multiple interpretations and potentially confounding factors related to local environmental conditions have not been tested by examining the critical interval in multiple areas and different depositional settings. To begin to address this shortcoming, we present new species-specific and mixed assemblage conodont δ18O values in samples spanning the M4/M5 boundary from the Upper Mississippi Valley, Alabama, and Virginia. The new results are combined with previous studies, providing a record of δ18O variability across SE Laurentia. The combined dataset allows us to test for regional trends at a resolution not previously available. Our results document a ~1.5‰ decrease in values across Laurentia instead of increasing δ18O values across the M4/M5 as predicted in various ‘cool-water’ scenarios. In short, these results do not support a shift to ‘cool-water’ conditions as an explanation for changes in early Katian carbonates across the M4/M5.

Corresponding author
Author for correspondence:
Hide All
Bassett D., MacLeod K. G., Miller J. F. & Ethington R. L. 2007. Oxygen isotopic composition of biogenic phosphate and temperature of Early Ordovician seawater. Palaios 22, 98103.
Bergström S. M., Chen X., Gutiérrez-Marco J. C. & Dronov A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97107.
Bergström S. M., Saltzman M. R., Leslie S. A., Ferretti A. and Young S. A. 2015. Trans-Atlantic application of the Baltic Middle and Upper Ordovician carbon isotope zonation. Estonian Journal of Earth Sciences 64, 812.
Bergström S. M., Schmitz B., Saltzman M. R. & Huff W. D. 2010. The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: occurrence, chronostratigraphic significance, and paleoenvironmental relationships. In The Ordovician System (eds Finney S. C. & Berry W. B. N.), pp. 3767. Geological Society of America, Special Paper no. 466.
Brett C., McLaughlin P. I., Cornell S. R. & Baird G. C. 2004. Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York–Ontario) and Lexington Platform (Kentucky–Ohio): implications for eustasy and local tectonism in eastern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 295329.
Buggisch W., Joachimski M. M., Lehnert O., Bergström S. M., Repetski J. E. & Webers G. F. 2010. Did intense volcanism trigger the first Late Ordovician icehouse? Geology 38, 327–30.
Dronov A. 2013. Late Ordovician cooling event: evidence from the Siberian craton. Palaeogeography, Palaeoclimatology, Palaeoecology 389, 8795.
Elrick M., Reardon D., Labor W., Martin J., Desrochers A. & Pope M. 2013. Orbital-scale climate change and glacioeustasy during the early Late Ordovician (pre-Hirnantian) determined from δ18O values in marine apatite. Geology 41, 775–8.
Emerson N. R., Ludvigson G. A., Witzke C. L., Schneider C. L., González L. A. & Carpenter S. J. 2005. STOP 5 – The Fred Carlson CO., LLC Locust Quarry west of Locust Iowa. In Facets of the Ordovician Geology of the Upper Mississippi Valley Region (eds Ludvigson G. A. & Bunker B. J.), pp. 95109. Iowa Geological Survey Guidebook Series no. 24.
Epstein A. G., Epstein J. B. & Harris L. D. 1977. Conodont color alteration – an index to organic metamorphism. US Geological Survey Professional Paper no. 995, —27 pp.
Ettensohn F. R. 2010. Origin of Late Ordovician (mid-Mohawkian) temperature: water conditions on southeastern Laurentia: glacial or tectonic? In The Ordovician System (eds Finney S. C. & Berry W. B. N.), pp. 163–75. Geological Society of America Special Paper no. 466.
Ettensohn F. R., Hohman J. C., Kulp M. A. & Rast N. 2002. Evidence and implications of possible far-field responses to Taconian orogeny: Middle-Late Ordovician Lexington Platform and Sebree Trough, east-central United States. Southeastern Geology 41, 136.
Hall J. C., Bergström S. M. & Schmidt M. A. 1986. Conodont biostratigraphy of the Middle Ordovician Chickamauga Group and related strata of the Alabama Appalachians. In Depositional History of the Middle Ordovician of the Alabama Appalachians: For the 23rd Annual Field Trip, Alabama Geological Society (eds Benson J. & Stock C. W.), pp. 61–80.
Haynes J. T. 1994. The Ordovician Deicke and Millbrig K-bentonite beds of the Cincinnati Arch and the Southern Valley and Ridge Province. Geological Society of America, Special Paper no. 290, 80 pp.
Herrmann A. D., Haupt B. J., Patzkowsky M. E., Seidov D. & Slingerland R. L. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 385401.
Herrmann A. D., MacLeod K. G. & Leslie S. A. 2010. Did a volcanic mega-eruption cause global cooling during the Late Ordovician? Palaios 25, 831–6.
Holland S. M. & Patzkowsky M. E. 1996. Sequence stratigraphy and long-term paleoceanographic changes in the Middle and Upper Ordovician of the eastern United States. In Paleozoic Sequence Stratigraphy: Views from the North American Craton (eds Wittke B. J., Ludvigson G. A. & Day J. F.), pp. 117–28. Geological Society of America, Special Paper no. 306.
Holmden C., Creaser R. A., Muehlenbachs K., Leslie S. A. & Bergström S. M. 1998. Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: implications for secular curves. Geology 26, 567–70.
Hughes K. P., MacLeod K. G., Haynes S. J., Quinton P. C., Martin E. E. & Ethington R. 2015. A paired neodymium and oxygen isotopic perspective on paleoceanographic changes across the Dubuque/Maquoketa contact in the Late Ordovician Laurentian Seaway. Stratigraphy 12, 275–85.
Jeppsson L. & Anehus R. 1995. A buffered formic acid technique for conodont extraction. Journal of Paleontology 69, 790–4.
Jeppsson L., Anehus R. & Fredholm D. 1999. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. Journal of Paleontology 73, 946–72.
Joachimski M. M., Breisig S., Buggisch W., Talent J. A., Mawson R., Gereke M., Morrow J. R., Day J. & Weddige K. 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284, 599609.
Kolata D. R., Huff W. D. & Bergström S. M. 1996. Ordovician K-bentonites of eastern North America. Geological Society of America, Special Paper no. 313, —84 pp.
Kolata D. R., Huff W. D. & Bergström S. M. 1998. Nature and regional significance of unconformities associated with the Middle Ordovician Hagan K-bentonite complex in the North America midcontinent. Geological Society of America Bulletin 110, 723–39.
Kolata D. R., Huff W. D. & Bergström S. M., 2001. The Ordovician Sebree Trough: an oceanic passage to the Midcontinent United States. Geological Society of America Bulletin 113, 1067–8.
Kolodny Y. & Luz B., 1991. Oxygen isotopes in phosphates of fossil fish – Devonian to recent. In Taylor H. T. J. (ed.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, pp. 6576. San Antonio, TX, Geochemical Society.
Kolodny Y., Luz B. & Navon O. 1983. Oxygen isotope variations in phosphate of biogenic apatites: I. Fish bone apatite: rechecking the rules of the game. Earth and Planetary Science Letters 64, 398404.
Laporte D. F., Holmden C., Patterson W. P., Prokopiuk T. & Eglington B. M. 2009. Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS. Journal of Mass Spectrometry 44, 879–90.
LAVOIE D. 1995. A Late Ordovician high-energy temperate-water carbonate ramp, southern Quebec, Canada: implications for Late Ordovician oceanography, Sedimentology, 42, 95116.
Lavoie D. & Asselin E. 1998. Upper Ordovician facies in the Lac Saint-Jean outlier, Québec (eastern Canada): palaeoenvironmental significance for Late Ordovician oceanography, Sedimentology 45, 817–32.
Leslie S. A. 1995. Upper Middle Ordovician conodont biofacies distribution patterns in eastern North America and northwestern Europe: evaluations using the Deicke, Millbrig and Kinnekulle K-bentonite beds as time planes. Ph.D. thesis, The Ohio State University, Columbus, OH, USA. Published thesis.
Leslie S. A. 2000. Mohawkian (Upper Ordovician) conodonts of Eastern North America and Baltoscandia. Journal of Paleontology 74, 1122–47.
Leslie S. A. & Bergström S. M. 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Comment. Geology 31, e28e29.
Longinelli A. 1965. Oxygen isotopic composition of orthophosphate from shells of living and fossil marine organisms. Nature 211, 923–7.
Ludvigson G. & Jacobson S. 1996. Carbonate component chemostratigraphy and depositional history of the Ordovician Decorah Formation, Upper Mississippi Valley. In Paleozoic Sequence Stratigraphy: Views from the North American Craton (eds Wittke B. J., Ludvigson G. A. & Day J. F.), pp. 6786. Geological Society of America, Special Paper 306.
Luz B., Kolodny Y. & Kovach J. 1984. Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth and Planetary Science Letters 69, 255–62.
MacLeod K. G. 2012. Conodonts and the paleoclimatological and paleoecological applications of phosphate δ18O measurements. In Reconstructing Earth's Deep-Time Climate – The State of the Art in 2012 (eds L. C. Ivany & B. T. Huber), pp. 69–84. Paleontological Society Papers 18.
Pedley M. & Carannante G., 2006. Cool-water carbonate ramps: a review. In Cool-water Carbonates: Depositional Systems and Palaeoenvironmental Controls (eds Pedley M. & Carannante C.), pp. 19. Geological Society of London, Special Publication 255. 1.
Pohl A., Donnadieu Y., Hir G. L., Buoncristiani J. F. & Vennin E. 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate. Climate Past 10, 2053–66.
Pope M. C. & Read J. F., 1997. High-resolution stratigraphy of the Lexington limestone (late Middle Ordovician), Kentucky, U.S.A.: a cool-water carbonate-clastic ramp in a tectonically active foreland basin. In Cool-water-carbonates (eds Noel P. & Clarke J. A. D.), pp. 410–29. SEPM Special Publication 56.
Pope M. C. & Steffen J. B. 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31, 63–6.
Pucéat E., Joachimski M. M., Bouilloux A., Monna F., Bonin A, Motreuil S., Morinière P., Hénard S., Mourin J., Dera G. & Quesne D., 2010. Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters 298, 135–42.
Quinton P. C., Herrmann A. D., Leslie S. A. & MacLeod K. G. 2016a. Carbon cycling across the southern margin of Laurentia during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 458. doi:10.1016/j.palaeo.2015.08.020.
Quinton P. C., Leslie S. A., Herrmann A. D. & MacLeod K. G. 2016 b. Effects of extraction protocols on the oxygen isotope composition of conodont elements. Chemical Geology 431, 3643.
Quinton P. C. & MacLeod K. G. 2014. Oxygen isotopes from conodont apatite of the midcontinent US: implications for Late Ordovician climate evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 404, 5766.
Railsback L. B., Ackerly S. C., Anderson T. F. & Cisne J. L. 1990. Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature 343, 156–9.
Rosenau N. A., Herrmann A. D. & Leslie S. A. 2012. Conodont apatite δ18O values from a platform margin setting, Oklahoma, USA: implications for initiation of Late Ordovician icehouse conditions. Palaeogeography, Palaeoclimatology, Palaeoecology 315–316, 172–80.
Saltzman M. R. & Young S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33, 109–12.
Samankassou E. 2002. Cool-water carbonates in a paleoequatorial shallow-water environment: the paradox of the Aurenig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria-Italy) and its implications. Geology 30, 655–8.
Sell B. K., Samson S. D., Mitchell C. E., McLaughlin P. J., Koenig A. E. & Leslie S. A. 2015. Stratigraphic correlations using trace elements in apatite from Late Ordovician (Sandbian-Katian) K-bentonites of eastern North America. Geological Society of American Bulletin 127, 125974.
Shackleton N. J. and Kennett J. P. 1975. Late Cenozoic oxygen and carbon isotopic changes at DSDP Site 284; implications for glacial history of the Northern Hemisphere and Antarctica. Initial Reports of the Deep Sea Drilling Project 29, 801–7.
Sun Y., Joachimski M. M., Wignall P. B., Yan C., Chen Y., Jiang H., Wang L. & Lai X., 2012. Lethally hot temperatures during the early Triassic greenhouse, Science 338, 366–70.
Torsvik T. H. & Cocks R. M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In Early Palaeozoic Biogeography and Palaeogeography (ed. Harper D.A.T. & Servais T.), pp. 524. Geological Society of London, Memoirs 38.
Trotter J. A., FitzGerald J. D., Kokkonen H. & Barnes C. R., 2007. New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy. Lethaia, 40: 97110.
Trotter J. A., Williams I. S., Barnes C. R., Lecuyer C. & Nicoll R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–4.
Wenzel B., Lecuyer C. & Joachimski M. M. 2000. Comparing oxygen isotope records of Silurian calcite and phosphate–δ18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta 64, 1859–72.
Westrop S. R., Amati L., Brett C. E., Swisher R. E., Carlucci J. R., Goldman D., Leslie S. A. & Burkhalter R. 2015. The more the merrier? Reconciling sequence stratigraphy, chemostratigraphy, and multiple biostratigraphic indices in the correlation of the Katian reference section, central Oklahoma. Stratigraphy, abstracts 12, 139.
Wright Z., Quinton P. C., Martin E., Leslie S. A., MacLeod K. G. & Herrmann A. D. In press. Neodymium isotope ratios and a positive δ13C excursion: interpreting the connection between oceanographic and climate changes during the early Late Ordovician of Laurentia. Stratigraphy.
Young S. A., Saltzman M. R. & Bergström S. M. 2005. Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: regional expression of a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 5376.
Young S. A., Saltzman M. R., Bergström S. M., Leslie S. A. & Xu C., 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian-Katian) carbonates in North America and China: implications for paleoceanographic change. Palaeogeography, Palaeoclimatology, Palaeoecology 270: 166–78.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Quinton supplementary material
Quinton supplementary material 1

 Word (33 KB)
33 KB


Full text views

Total number of HTML views: 4
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 237 *
Loading metrics...

* Views captured on Cambridge Core between 2nd August 2017 - 20th January 2018. This data will be updated every 24 hours.