Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-16T01:33:32.543Z Has data issue: false hasContentIssue false

Triassic rift-related meta-granites in the Internal Hellenides, Greece

Published online by Cambridge University Press:  20 January 2009

F. HIMMERKUS*
Affiliation:
Johannes Gutenberg-Universität, Institut für Geowissenschaften, Becherweg 21, Mainz 55099, Germany Max-Planck-Institut für Chemie, Abteilung Geochemie, Mainz 55128, Germany
T. REISCHMANN
Affiliation:
Max-Planck-Institut für Chemie, Abteilung Geochemie, Mainz 55128, Germany
D. KOSTOPOULOS
Affiliation:
National and Kapodistrian University of Athens, Faculty of Geology and GeoEnvironment, Department of Mineralogy and Petrology, Panepistimioupoli, Zographou, Athens 15784, Greece
*
Author for correspondence: Felix.Himmerkus@hdb.fzk.de

Abstract

The Serbo-Macedonian Massif is a basement complex in the Internal Hellenides of northern Greece, situated between the Vardar Zone to the west and the Rhodope Massif to the east. The Serbo-Macedonian Massif comprises several distinct basement units interpreted as terranes, the largest of which is the Gondwana-derived Vertiskos Terrane in the northwestern and central parts of the massif. A series of leucocratic meta-granites intrude the Silurian orthogneiss basement of the Vertiskos Terrane. No similar granites are found in any of the other units of the Internal Hellenides. The meta-granites have a pronounced crustal within-plate signature which is visible in lithology, major- and trace-element geochemistry and the Sr isotopic compositions. These intrusions were dated using the Pb–Pb single-zircon evaporation method, and yielded a Triassic age of between 240.7 ± 2.6 Ma and 221.7 ± 1.9 Ma on 17 samples, with a mean age of 228.3 ± 5.6 Ma. The zircons are purely magmatic, indicating that ages are primary crystallization ages. A Rb–Sr errorchron of the whole-rock samples of the Arnea granite yielded an age of 231.6 ± 9.9 Ma (MSWD = 82), and a mean 87Sr/86Sr initial ratio is 0.7142, indicating a crust-dominated source, and suggesting an A-type origin for the granites. The A-type meta-granites together with mafic intrusive bodies (amphibolites) in the Vertiskos Terrane may be evidence of Triassic rifting that led to the formation of a branch of Neotethys (Vardar–Meliata Ocean). Similar rock associations are also exposed in the Cyclades, and in massifs of the wider eastern Mediterranean realm related to the Gondwana-derived Hun Terrane, indicating that the Arnea-type granites are representatives of a major regional rifting event in Triassic times.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, B., Reischmann, T. & Kostopoulos, D. 2007. Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. International Journal of Earth Sciences (Geologische Rundschau) 96, 639–61.CrossRefGoogle Scholar
Anders, B., Reischmann, T., Kostopoulos, D. & Poller, U. 2006. The oldest rocks of Greece: first evidence for a Precambrian terrane within the Pelagonian Zone. Geological Magazine 143, 4158.CrossRefGoogle Scholar
Anders, B., Reischmann, T., Poller, U. & Kostopoulos, D. 2005. Age and origin of granitic rocks in the eastern Vardar Zone, Greece, new constraints on the evolution of the Internal Hellenides. Journal of the Geological Society, London 162, 857–70.CrossRefGoogle Scholar
Bébien, J., Michard, A., Montigny, R., Feinberg, H. & Voidomatis, P. 2001. The Grigoriou Plutonic Complex (Mt Athos, Greece): A Component of the North Aegean Eocene–Oligocene Calc-Alkaline Magmatism. EUG XI, Symposium LS03, Conference Abstracts, 314.Google Scholar
Bonev, N. G., Marchev, P. & Singer, B. 2006. 40Ar/39Ar geochronology constraints on the Middle Tertiary basement extensional exhumation, and its relation to ore-forming and magmatic processes in the Eastern Rhodope (Bulgaria). Geodinamica Acta 19 (5), 265–80.CrossRefGoogle Scholar
Bonev, N. G. & Stampfli, G. M. 2003. New structural and petrologic data on Mesozoic schists in the Rhodope (Bulgaria): geodynamic implications. Comptes rendus Geoscience 335, 691–9.Google Scholar
Bonev, N. G. & Stampfli, G. M. 2007. Petrology, geochemistry and geodynamic implications of Jurassic island arc magmatism as revealed by mafic volcanic rocks in the Mesozoic low-grade sequence, eastern Rhodope, Bulgaria. Lithos 100, 210–33.Google Scholar
Bouseley, A. M. & Sokkary, A. A. 1975. The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology 16, 207–19.CrossRefGoogle Scholar
Bröcker, M. & Pidgeon, R. T. 2007. Protolith ages of meta-igneous and meta-tuffaceous rocks from the Cycladic blueschist unit, Greece: results of a reconnaissance U–Pb zircon study. Journal of Geology 115, 8398.CrossRefGoogle Scholar
Burg, J.-P., Godfriaux, I. & Ricou, L.-E. 1995. Extension of the Mesozoic Rhodope thrust units in the Vertiskos-Kerdillion Massifs (Northern Greece). Comptes Rendus de la Académie des Sciences, Paris 320 (9), 889–96.Google Scholar
Burg, J.-P., Ricou, L.-E., Ivanov, Z., Godfriaux, I., Dimov, D. & Klain, L. 1996. Syn-metamorphic nappe complex in the Rhodope Massif. Structure and Kinematics. Terra Nova 8, 615.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 126.CrossRefGoogle Scholar
Cherniak, D. J. & Watson, E. B. 2000. Pb diffusion in zircon. Chemical Geology 172, 524.Google Scholar
Christofides, G., Koroneos, A., Pe-Piper, G., Katirtzoglou, K. & Chatzikirkou, A. 1999. Pre-Tertiary A-Type magmatism in the Serbomacedonian massif (N. Greece): Kerkini granitic complex. Bulletin of the Geological Society, Greece 33, 131–48.Google Scholar
De La Roche, H., Leterrier, J., Grandeclaude, P. & Marchal, M. 1980. A classification of volcanic and plutonic rocks using R1–R1 diagrams and major and trace element analysis – its relationship to modern nomenclature. Chemical Geology 29, 183210.CrossRefGoogle Scholar
De Wet, A. P., Miller, J. A., Bickle, M. J. & Chapman, H. J. 1989. Geology and geochronology of the Arnea, Sithonia and Ouranoupolis intrusions, Chalkidiki peninsula, Northern Greece. Tectonophysics 161, 6579.CrossRefGoogle Scholar
Dimitriadis, S. & Asvesta, A. 1993. Sedimentation and magmatism related to the Triassic rifting and later events in the Vardar–Axios Zone. Bulletin of the Geological Society of Greece 28, 149–68.Google Scholar
Dimitrijevic, M. D. 1974. Sur l'âge du métamorphisme et des plissements dans la masse Sérbo-Macédonienne. Bulletin de l'Association Géologique Carpatho-Balkanique 1963 21, 45–8.Google Scholar
Dimitrijevic, M. D. 1997. Geology of Yugoslavia. Special Publication, Geological Institute, GEMINI, Belgrade, 187 pp.Google Scholar
Dinter, D. A. 1998. Late Cenozoic extension of the Alpine collisional orogen, northeastern Greece; origin of the North Aegean Basin. Geological Society of America Bulletin 110 (9), 1208–26.2.3.CO;2>CrossRefGoogle Scholar
Dinter, D. A. & Royden, L. 1993. Late Cenozoic extension in northeastern Greece; Strymon Valley detachment system and Rhodope metamorphic core complex. Geology 21 (1), 45–8.2.3.CO;2>CrossRefGoogle Scholar
Dixon, J. E. & Dimitriadis, S. 1984. Metamorphosed ophiolitic rocks from the Serbo-Macedonian Massif, near Lake Volvi, North-east Greece. In The Geological Evolution of the eastern Mediterranean (eds Dixon, J. E., & Robertson, A. H. F.), pp. 603–18. Geological Society of London, Special Publication no. 17.Google Scholar
Dürr, S., Altherr, R., Keller, J., Okrusch, M. & Seidel, E. 1978. The median Aegean crystalline belt: stratigraphy, structure, metamorphism, magmatism. In Alps, Appenines, Hellenides. Report 38 (eds Closs, H., Roeder, D. H. & Schmidt, K.), pp. 455–77. IUGS. Stuttgart: Schweizerbart.Google Scholar
Engel, M. & Reischmann, T. 1998. Single-zircon geochronology of the orthogneisses from Paros, Greece. Bulletin of the Geological Society of Greece 32 (3), 91–9.Google Scholar
Frei, R. 1996. The extend of inner mineral isotope equilibrium: a systematic bulk U–Pb and Pb step leaching (PbSL) isotope study of individual minerals from a Tertiary granite of lerissos (northern Greece). European Journal of Mineralogy 8, 1175–89.Google Scholar
Gautier, P., Brun, J.-P., Moriceau, R., Sokoutis, D., Martinod, J. & Jolivet, L. 1999. Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315, 3172.CrossRefGoogle Scholar
Himmerkus, F., Anders, B., Reischmann, T. & Kostopoulos, D. K. 2007. Gondwana-derived terranes in the northern Hellenides. 4-D Framework of Continental Crust (eds Hatcher, R. D. Jr, Carlson, M. P., McBride, J. H. & Martínez-Catalán, J. R.), pp. 379–90. Geological Society of America, Memoir no. 200.Google Scholar
Himmerkus, F., Reischmann, T. & Kostopoulos, D. K. 2006. Late Proterozoic and Silurian basement units within the Serbo-Macedonian Massif, northern Greece: the significance of terrane accretion in the Hellenides. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 3550. Geological Society of London, Special Publication no. 260.Google Scholar
Himmerkus, F., Reischmann, T. & Kostopoulos, D. K. 2009. Serbo-Macedonian revisited: a Silurian basement terrane from northern Gondwana in the Internal Hellenides, Greece. Tectonophysics, in press.CrossRefGoogle Scholar
Jacobshagen, V. 1986. Geologie von Griechenland. Berlin, Stuttgart: Gebrüder Borntraeger, 363 pp.Google Scholar
Jones, C. E., Tarney, J., Baker, J. & Gerouki, F. 1992. Tertiary granitoids of Rhodope, northern Greece: magmatism related to extensional collapse of the Hellenic Orogen? Tectonophysics 210, 295314.CrossRefGoogle Scholar
Kauffmann, G., Kockel, F. & Mollat, H. 1976. Notes on the stratigraphic and palaeogeographic position of the Svoula Formation in the Innermost Zone of the Hellenides (Northern Greece). Bulletin Societé géologique de France 18, 225–30.CrossRefGoogle Scholar
Keay, S., Lister, G. & Buick, I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342, 275312CrossRefGoogle Scholar
Kilias, A., Falalakis, G. & Mountrakis, D. 1999. Cretaceous–Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). International Journal of Earth Sciences (Geologische Rundschau) 88 (3), 513–31.CrossRefGoogle Scholar
Kober, B. 1986. Whole grain evaporation for 207Pb/206Pb-age investigations on single zircons using a double filament thermal ion source. Contributions to Mineralogy and Petrology 93, 482–90.CrossRefGoogle Scholar
Kober, B. 1987. Single zircon evaporation combined with Pb+emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contributions to Mineralogy and Petrology 96, 6371.Google Scholar
Kockel, F., Mollat, H. & Walther, H. W. 1977. Erläuterungen zur geologischen Karte der Chalkidiki und angrenzender Gebiete 1:100000 (Nord-Griechenland). Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe, 119 pp.Google Scholar
Koralay, O. E., Satir, M. & Dora, O. Ö. 2001. Geochemical and geochronological evidence for Early Triassic calc-alkaline magmatism in the Menderes Massif, western Turkey. International Journal of Earth Sciences (Geologische Rundschau) 89, 822–35.CrossRefGoogle Scholar
Kostopoulos, D. K., Reischmann, T. & Sklavounos, S. A. 2001. Palaeozoic and Early Mesozoic magmatism and metamorphism in the Serbo-Macedonian Massif, central Macedonia, northern Greece. EUG XI, Symposium, LS03, 318.Google Scholar
Lee, J. K. W., Williams, I. S. & Ellis, D. J. 1997. Pb, U and Th diffusion in natural zircon. Nature 390, 159–62.Google Scholar
Le Maitre, R. W. 1989. A classification of igneous rocks and glossary of terms. Oxford: Blackwell Scientific Publications, 193 pp.Google Scholar
Liati, A. & Fanning, M. C. 2005. Eclogites and Country rock orthogneisses representing upper Permian Gabbros in Hercynian Granitoids, Rhodope, Greece: Geochronological Constraints. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 150, 88.Google Scholar
Liati, A. & Gebauer, D. & Fanning, C. M. 2004. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U–Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology 207, 171–88.Google Scholar
Lips, A. L. W., White, S. H. & Wijbrans, J. R. 2000. Middle-Late Alpine thermostatic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta 13, 281–92.Google Scholar
Ludwig, K. R. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication no. 4.Google Scholar
Mercier, J. 1968. Etudes géologique des zones internes des Hellénides en Macédoine centrale (Grèce), II – Contribution à l'étude du métamorphisme et de l'évolution magmatiques des zones internes des Hellénides. Thèse Doct. Ès Sciences, Univ. Paris. Annales Géologiques des Pays Helléniques 20, 792 pp.Google Scholar
Mercier, J., Vergely, P. & Bébien, J. 1975. Les ophiolites hélleniques ‘obductés’ au Jurassique supérieur sont-elles les vestiges d'un océan tethysien ou d'une mer marginale peri-européenne? Bulletin Societé Géologique de France 17, 108–12.Google Scholar
Mountrakis, D. 1986. The Pelagonian Zone in Greece: a polyphase-deformed fragment of the Cimmerian Continent and its role in the geotectonic evolution of the eastern Mediterranean. Journal of Geology 94, 335–47.CrossRefGoogle Scholar
Neubauer, F. 2002. Evolution of late Neoproterozoic to early Paleozoic tectonic elements in central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352, 87103.Google Scholar
Papadopoulos, C. & Kilias, A. 1985. Altersbeziehungen zwischen Metamorphose und Deformation im zentralen Teil des Serbomazedonischen Massivs (Vertiskos Gebirge, Nordgriechenland). Geologische Rundschau 74, 7785.Google Scholar
Papanastassiou, D. A. & Wasserburg, G. J. 1969. Initial Strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth and Planetary Science Letters 5, 361–76.Google Scholar
Papanikolaou, D. 1997. The tectonostratigraphic terranes of the Hellenides. Annales Géologiques des Pays Helléniques 37, 495514.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Pe-Piper, G. 1998. The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geological Magazine 135 (3), 331–48.CrossRefGoogle Scholar
Pe-Piper, G. & Piper, D. J. W. 2002. The igneous rocks of Greece. The anatomy of an orogen. Berlin, Stuttgart: Gebrueder Borntraeger, 573 pp.Google Scholar
Peytcheva, I., von Quadt, A., Titorenkova, R., Zidarov, N. & Tarassova, E. 2005. Skrut Granitoids from Belassitsa Mountain, SW Bulgaria: Constraints from Isotope-geochronological and geochemical Zircon data. Bulgarian Geological Society, 80th Anniversary Publication, 109–12.Google Scholar
Reischmann, T. 1998. Pre-Alpine origin of tectonic units from the metamorphic complex of Naxos, Greece, identified by single zircon Pb/Pb dating. Bulletin of the Geological Society of Greece 22, 101–11.Google Scholar
Ricou, L.-E., Burg, J.-P., Godfriaux, I. & Ivanov, Z. 1998. Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta 11, 285309.CrossRefGoogle Scholar
Şengör, A. M. C., Yilmaz, Y. & Sungurlu, O. 1984. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Palaeo-Tethys. In The Geological Evolution of the eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 77112. Geological Society of London, Special Publication no. 17.Google Scholar
Smith, A. G. & Rassios, A. 2003. The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites. In Ophiolite concept and the evolution of geological thought (eds Dilek, Y. & Newcomb, S.), pp. 337–50. Geological Society of America, Special Publication no. 373.Google Scholar
Sokoutis, D., Brun, J. P., Van Den Driessche, J. & Pavlides, S. 1993. A major Oligo-Miocene detachment in southern Rhodope controlling north Aegean extension. Journal of the Geological Society, London 150, 243–6.Google Scholar
Spray, J. G., Bébien, J., Rex, D. C. & Roddick, J. C. 1984. Age constraints on evolution of the Hellenic–Dinaric ophiolites. In The Geological Evolution of the eastern Mediterranean (eds Dixon, J. E., & Robertson, A. H. F.), pp. 619–27. Geological Society London, Special Publication no. 17.Google Scholar
Stacey, J. S. & Kramers, J. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Stais, A. & Ferriére, J. 1991. Nouvelles données sur la paléogéographie Mésozoique du domaine Vardarien. Les bassins d' Almopias et de Péonias (Macédoine, Hellénides internes septentrionales). Bulletin of the Geological Society of Greece 25, 491507.Google Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters 196, 1733.CrossRefGoogle Scholar
Stampfli, G. M., Rosselet, F. & Bagheri, S. 2004. Tethyan oceans and sutures. 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, April 14–20, 2004, Conference Abstracts, T1, 21.Google Scholar
Tomaschek, F., Kennedy, A., Keay, S. & Ballhaus, C. 2001. Geochronological constraints on Carboniferous and Triassic magmatism in the Cyclades: SHRIMP U–Pb ages of zircons from Syros, Greece. Journal of Conference Abstracts 6 (1), 315.Google Scholar
von Raumer, J. F., Stampfli, G. M. & Bussy, F. 2003. Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 722.Google Scholar
White, W. M. & Patchett, J. 1984. Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters 67, 167–85.Google Scholar
Zidarov, N., Peytcheva, I., von Quadt, A., Tarasova, E. & Andreichev, V. 2004. Timing and magma sources of Igralishte pluton (SW Bulgaria): Preliminary isotope-geochronological and geochemical data. Annual Scientific Conference ‘Geology 2004’ 16–17 December 2004, 4 pp. Bulgarian Geological Society.Google Scholar
Supplementary material: File

Himmerkus supplementary material

Tables.doc

Download Himmerkus supplementary material(File)
File 625.7 KB