Skip to main content
×
×
Home

Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle

  • ANDREW D. SAUNDERS (a1)
Abstract

The links between the Siberian Traps and the end-Permian mass extinction, and between the North Atlantic igneous province (NAIP) and the Paleocene–Eocene thermal maximum (PETM), demonstrate a critical role for large igneous provinces (LIPs) in the disruption of the Earth-surface carbon cycle (ESCC). High-precision ages for both volcanic provinces and the associated environmental crises show that, in both cases, the crisis was contemporaneous with the volcanism. The NAIP comprises two phases: the earlier Phase 1 (c. 61 Ma) and the much more voluminous Phase 2 (c. 56 Ma), linked to the opening of the NE Atlantic. The latter triggered the PETM, the largest Cenozoic hyperthermal. The Siberian Traps are significantly more voluminous than the NAIP, and triggered the end-Permian mass extinction. The masses of volcanic CO2 emitted from these provinces may have been much greater than previously suggested as substantial gas may come from intrusive bodies deep within the crust. Precursory warming due to the accumulation of volcanic CO2 in the atmosphere likely triggered the release of low-δ13C methane hydrate, although the masses of methane hydrate alone may have been insufficient to account for the observed temperature rises. The organic C was likely strongly supplemented by magmatically derived carbon and thermogenic carbon released during emplacement of sills and dykes into C-rich sedimentary units. More data are required on the volcanic flux rates in order to refine the cause–effect relationships between LIPs and the ESCC.

Copyright
Corresponding author
* Address for correspondence: ads@le.ac.uk
References
Hide All
Aarnes, I., Svensen, H., Connolly, J. A. D. & Podladchikov, Y. Y. 2010. How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta 74 (24), 7179–95.
Algeo, T. J., Chen, Z. Q., Fraiser, M. L. & Twitchett, R. J. 2011a. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 308 (1–2), 111.
Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. & Maynard, J. B. 2011b. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 308 (1–2), 6583.
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. 1980. Extraterrestrial causes for the Cretaceous-Tertiary extinction. Science 208, 1095–108.
Armstrong McKay, D. I., Tyrrell, T., Wilson, P. A. & Foster, G. L. 2014. Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study. Earth and Planetary Science Letters 403, 254–62.
Artemieva, I. M. & Mooney, W. D. 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study. Journal of Geophysical Research 106 (B8), 16387–414.
Bains, S., Corfield, R. M. & Norris, R. D. 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285 (5428), 724–27.
Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. 2001. Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–33.
Benton, M. J. 2003. When Life Nearly Died. The Greatest Mass Extinction of all Time. London: Thames and Hudson, 336 pp.
Benton, M. J. & Twitchett, R. J. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology & Evolution 18 (7), 358–65.
Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters 317, 363–73.
Blake, S., Self, S., Sharma, K. & Sephton, S. 2010. Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation. Earth and Planetary Science Letters 299 (3–4), 328–38.
Bond, D. P. G. & Wignall, P. B. 2014. Large igneous provinces and mass extinctions: an update. In Volcanism, Impacts, and Mass Extinctions (eds Keller, G. & Kerr, A. C.), pp. 2956. Geological Society of America, Special Paper 505.
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Rohl, U., Westerhold, T., Steimke, A., Gingerich, P. D., Wing, S. L. & Clyde, W. C. 2015. Two massive, rapid releases of carbon during the onset of the Paleocene-Eocene thermal maximum. Nature Geoscience 8 (1), 44–7.
Bowen, G. J. & Zachos, J. C. 2010. Rapid carbon sequestration at the termination of the Paleocene-Eocene Thermal Maximum. Nature Geoscience 3 (12), 866–9.
Bralower, T. J., Kelly, D. C., Gibbs, S., Farley, K., Eccles, L., Lindemann, T. L. & Smith, G. J. 2014a. Impact of dissolution on the sedimentary record of the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters 401 (0), 7082.
Bralower, T. J., Meissner, K. J., Alexander, K. & Thomas, D. J. 2014b. The dynamics of global change at the Paleocene-Eocene thermal maximum: A data-model comparison. Geochemistry, Geophysics, Geosystems 15 (10), 3830–48.
Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 108 (43), 17631–34.
Buffett, B. & Archer, D. 2004. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth and Planetary Science Letters 227 (3–4), 185–99.
Burgess, S. D., Bowring, S. & Shen, S.-Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences 111 (9), 3316–21.
Campbell, I. A., Czamanske, G. K., Fedorenko, V. A., Hill, R. I. & Stepanov, V. 1992. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science 258, 1760–3.
Campbell, I. H. & Griffiths, R. W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters 99, 7993.
Cao, C., Love, G. D., Hays, L. E., Wang, W., Shen, S. & Summons, R. E. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters 281 (3–4), 188201.
Cao, C. Q., Wang, W. & Jin, Y. G. 2002. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China. Chinese Science Bulletin 47 (13), 1125–9.
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J. E. A., Cui, Y., Kump, L. & Croudace, I. W. 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems 12 (6), Q0AA17.
Chen, B., Joachimski, M. M., Shen, S.-Z., Lambert, L. L., Lai, X.-L., Wang, X.-D., Chen, J. & Yuan, D.-X. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research 24 (1), 7789.
Chen, Z., Wang, X., Hu, J., Yang, S., Zhu, M., Dong, X., Tang, Z., Peng, P. A. & Ding, Z. 2014. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene–Eocene Thermal Maximum record from central China. Earth and Planetary Science Letters 408 (0), 331–40.
Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. 2007. 40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth and Planetary Science Letters 263 (1–2), 115.
Cohen, A. S., Coe, A. L. & Kemp, D. B. 2007. The Late Paleocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their timescales, associated environmental changes, causes and consequences. Journal of the Geological Society 164, 1093–8.
Coltice, N., Simon, L. & Lecuyer, C. 2004. Carbon isotope cycle and mantle structure. Geophysical Research Letters 31 (5), 5.
Cordery, M. J., Davies, G. F. & Campbell, I. H. 1997. Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research 102 (B9), 20179–97.
Courtillot, V. 1994. Mass extinctions in the last 300 million years: one impact and seven flood basalts? Israeli Journal of Earth Sciences 43, 255–66.
Courtillot, V. & McLinton, J. 2002. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge: Cambridge University Press.
Cui, Y. & Kump, L. R. 2014. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews, published online 8 May 2014. doi: doi:10.1016/j.earscirev.2014.04.007.
Czamanske, G. K., Gurevitch, V., Fedorenko, V. & Simonov, O. 1998. Demise of the Siberian plume: palaeogeographic and palaeotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review 40, 95115.
Dal Corso, J., Mietto, P., Newton, R. J., Pancost, R. D., Preto, N., Roghi, G. & Wignall, P. B. 2012. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40 (1), 7982.
Deines, P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews 58 (3–4), 247–78.
Des Marais, D. J. & Moore, J. G. 1984. Carbon and its isotopes in mid-oceanic basaltic glasses. Earth and Planetary Science Letters 69, 4357.
Dickens, G. R., Oneil, J. R., Rea, D. K. & Owen, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. Paleoceanography 10 (6), 965–71.
Dickin, A. P. 1988. The North Atlantic Tertiary Province. In Continental Flood Basalts (ed. Macdougall, J. D.), pp. 111–49. Dordrecht, Netherlands: Kluwer Academic Publishers.
Dickson, A. J., Cohen, A. S. & Coe, A. L. 2012. Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. Geology 40 (7), 639–42.
Dickson, A. J., Rees-Owen, R. L., Maerz, C., Coe, A. L., Cohen, A. S., Pancost, R. D., Taylor, K. & Shcherbinina, E. 2014. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29 (6), 471–88.
Dunkley Jones, T., Ridgwell, A., Lunt, D. J., Maslin, M. A., Schmidt, D. N. & Valdes, P. J. 2010. A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 368 (1919), 2395–415.
Eldholm, O. & Grue, K. 1994. North Atlantic volcanic margins: dimensions and production rates. Journal of Geophysical Research 99 (B2), 2955–68.
Eldholm, O. & Thomas, E. 1993. Environmental impact of volcanic margin formation. Earth and Planetary Science Letters 117, 319–29.
Elkins-Tanton, L. T. 2007. Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. Journal of Geophysical Research-Solid Earth 112 (B3), doi: 10.1029/2005JB004072.
Erwin, D. H. 2005. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton and Oxford: Princeton University Press, 296 pp.
Fraiser, M. L. & Bottjer, D. J. 2007. Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 252 (1–2), 164–75.
Fram, M. & Lesher, C. E. 1993. Geochemical constraints on mantle melting during creation of the North Atlantic basin. Nature 363, 712–5.
Fram, M. S. & Lesher, C. E. 1997. Generation and polybaric differentiation of East Greenland early Tertiary flood basalts. Journal of Petrology 38 (2), 231–75.
Fram, M. S., Lesher, C. E. & Volpe, A. M. 1998. Mantle melting systematics: the transition from continental to oceanic volcanism on the southeast Greenland margin. In Scientific Results, Ocean Drilling Program 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S.), pp. 373–86. College Station, Texas: Ocean Drilling Program.
Ganino, C. & Arndt, N. T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37 (4), 323–6.
Geikie, A. 1903. Textbook of Geology, 4th edition. London: MacMillan & Co. Ltd.
Gladczenko, T. P., Coffin, M. F. & Eldholm, O. 1997. Crustal structure of the Ontong Java Plateau: modelling of new gravity and existing seismic data. Journal of Geophysical Research 102 (B10), 22711–29.
Godderis, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews 128, 122–38.
Grard, A., Francois, L. M., Dessert, C. & Goddéris, Y. 2005. Basaltic volcanism and mass extinction at the Permo-Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth and Planetary Science Letters 234, 207–21.
Grice, K., Cao, C. Q., Love, G. D., Bottcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W. & Jin, Y. G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307 (5710), 706–9.
Hallam, A. 2005. Catastrophes and Lesser Calamities: The Causes of Mass Extinctions. Oxford: Oxford University Press, 240 pp.
Hallam, A. & Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. New York, NY: Oxford University Press, 320 pp.
Handley, L., Crouch, E. M. & Pancost, R. D. 2011. A New Zealand record of sea level rise and environmental change during the Paleocene-Eocene Thermal Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 305 (1–4), 185200.
Hansen, H. J. 2006. Stable isotopes of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions. Lithos 92 (1–2), 105–16.
Hartley, M. E., Maclennan, J., Edmonds, M. & Thordarson, T. 2014. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth and Planetary Science Letters 393, 120–31.
Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., Blake, S., Naldrett, A. J., Doherty, W. & Gorbachev, N. S. 1995. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 6188.
Holser, W. T., Schönlaub, H.-P., Attrep, M., Boeckelmann, K., Klein, P., Magaritiz, M., Orth, C. J., Fenninger, A., Jenny, C., Kralik, M., Mauritsch, H., Pak, E., Schramm, J.-M., Stattegger, K. & Schmöller, R. 1989. A unique geochemical record at the Permian-Triassic boundary. Nature 337, 3944.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto, T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L. & Williams, B. 2012. The geological record of ocean acidification. Science 335 (6072), 1058–63.
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–38.
Ivanov, A. V., He, H., Yan, L., Ryabov, V. V., Shevko, A. Y., Palesskii, S. V. & Nikolaeva, I. V. 2013. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Science Reviews 122 (0), 5876.
Ivanov, A. V., He, H., Yang, L., Nikolaeva, I. V. & Palesskii, S. V. 2009. 40Ar/39Ar dating of intrusive magmatism in the Angara-Taseevskaya syncline and its implication for duration of magmatism of the Siberian traps. Journal of Asian Earth Sciences 35 (1), 112.
Jones, T. D., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J. & Maslin, M. 2013. Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Science Reviews 125, 123–45.
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, A., Davis, D. W. & Trofimov, V. R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214, 7591.
Kamo, S. L., Czamanske, G. K. & Krogh, T. E. 1996. A minimum U-Pb age for Siberian flood-basalt volcanism. Geochimica et Cosmochimica Acta 60 (18), 3505–11.
Katz, M. E., Pak, D. K., Dickens, G. R. & Miller, K. G. 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286, 1531–3.
Kennett, J. P. & Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353 (6341), 225–9.
Kent, D. V., Cramer, B. S., Lanci, L., Wang, D., Wright, J. D. & Van der Voo, R. 2003. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth and Planetary Science Letters 211, 1326.
Kidder, D. L. & Worsley, T. R. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology 203 (3–4), 207–37.
Knox, R. W. & Morton, A. C. 1988. The record of early Tertiary N Atlantic volcanism in sediments of the North Sea Basin. In Early Tertiary Volcanism and the Opening of the NE Atlantic (eds Morton, A. C. & Parson, L. M.), pp. 407–19. Geological Society of London, Special Publication no. 39.
Korte, C. & Kozur, H. W. 2010. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. Journal of Asian Earth Sciences 39 (4), 215–35.
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R. & Wijbrans, J. R. 2008. Synchronizing rock clocks of Earth history. Science 320 (5875), 500–4.
Kump, L. R., Pavlov, A. & Arthur, M. A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33 (5), 397400.
Kvenvolden, K. A. 2002. Methane hydrate in the global organic carbon cycle. Terra Nova 14 (5), 302–6.
Larsen, L. M., Watt, W. S. & Watt, M. 1989. Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. Bulletin of the Geological Survey of Greenland 157, 1164.
Larsen, R. B. & Tegner, C. 2006. Pressure conditions for the solidification of the Skaergaard intrusion: eruption of East Greenland flood basalts in less than 300,000 years. Lithos 92 (1–2), 181–97.
Larsen, T. B., Yuen, D. A. & Storey, M. 1999. Ultrafast mantle plumes and implications for flood basalt volcanism in the northern Atlantic region. Tectonophysics 311, 3143.
Lawver, L. A. & Müller, R. D. 1994. Iceland hotspot track. Geology 22, 311–4.
Lightfoot, P. C., Naldrett, A. J., Gorbachev, N. S., Doherty, W. & Fedorenko, V. A. 1990. Geochemistry of the Siberian Traps of the Noril'sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contributions to Mineralogy and Petrology 104, 631–44.
Majorowicz, J., Grasby, S. E., Safanda, J. & Beauchamp, B. 2014. Gas hydrate contribution to Late Permian global warming. Earth and Planetary Science Letters 393 (0), 243–53.
Maslin, M. A. & Thomas, E. 2003. Balancing the deglacial global carbon budget: the hydrate factor. Quaternary Science Reviews 22 (15–7), 1729–36.
Mattey, D. P., Carr, R. H., Wright, I. P. & Pillinger, C. T. 1984. Carbon isotopes in submarine basalts. Earth and Planetary Science Letters 70, 196206.
McCartney, K., Huffman, A. R. & Tredoux, M. 1990. A paradigm for endogenous causation of mass extinctions. In Global Catastrophes in Earth History (eds Sharpton, V. L. & Ward, P. D.), pp. 125–38. Geological Society of America, Special Paper no. 247.
McLean, D. M. 1985. Deccan traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Research 6 (3), 235–59.
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. 2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302 (3–4), 378–84.
Mussard, K. M., Le Hir, G., Fluteau, F., Lefebvre, V. & Godderis, Y. 2014. Modeling the carbon-sulfate interplays in climate changes related to the emplacement of continental flood basalts. In Volcanism, Impacts, and Mass Extinctions (eds Keller, G. & Kerr, A. C.), pp. 339–52. Geological Society of America, Special Paper no. 505.
Officer, C. B. & Drake, C. L. 1983. The Cretaceous-Tertiary transition. Science 219 (4591), 1383–90.
Officer, C. B. & Drake, C. L. 1985. Terminal Cretaceous environmental events. Science 227 (4691), 1161–7.
Officer, C. B., Hallam, A., Drake, C. L. & Devine, J. D. 1987. Late Cretaceous and paroxysmal Cretaceous Tertiary extinctions. Nature 326 (6109), 143–9.
Ogden, D. E. & Sleep, N. H. 2012. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America 109 (1), 5962.
Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. 2006. An ancient carbon mystery. Science 314 (5805), 1556–7.
Pälicke, C., Delaney, M. L. & Zachos, J. C. 2014. Deep-sea redox across the Paleocene-Eocene thermal maximum. Geochemistry Geophysics Geosystems 15 (4), 1038–53.
Payne, J. L. & Clapham, M. E. 2012. End-Permian Mass Extinction in the Oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40, 89111.
Payne, J. L. & Kump, L. R. 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters 256 (1–2), 264–77.
Payne, J. L., Lehrmann, D. J., Follett, D., Seibel, M., Kump, L. R., Riccardi, A., Altiner, D., Sano, H. & Wei, J. 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin 119 (7–8), 771–84.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305 (5683), 506–9.
Payne, J. L., Turchyn, A. V., Paytan, A., DePaolo, D. J., Lehrmann, D. J., Yu, M. & Wei, J. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences 107 (19), 8543–8.
Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. 2014. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29 (5), 2014PA002621.
Racki, G. 2012. The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Acta Palaeontologica Polonica 57 (4), 681702.
Racki, G. & Wignall, P. B. 2005. Late Permian double-phased mass extinction and volcanism: an oceanographic perspective. Developments in Palaeontology and Stratigraphy 20, 263–97.
Rampino, M. R. & Caldeira, K. 2005. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17 (6), 554–9.
Rampino, M. R., Self, S. & Stothers, R. B. 1988. Volcanic winters. Annual Review of Earth and Planetary Science 16, 7399.
Rampino, M. R. & Stothers, R. B. 1988. Flood basalt volcanism during the past 250 million years. Science 241, 663–8.
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206 (4415), 217–8.
Ravizza, G., Norris, R. N., Blusztajn, J. & Aubry, M. P. 2001. An osmium isotope excursion associated with the Late Paleocene thermal maximum: Evidence of intensified chemical weathering. Paleoceanography 16 (2), 155–63.
Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A. & Saunders, A. D. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277 (1–2), 920.
Reichow, M. K., Saunders, A. D., White, R. V., Pringle, M. S., Al'Mukhamedov, A. I., Medvedev, A. & Korda, N. 2002. New 40Ar–39Ar data on basalts from the West Siberian Basin: Extent of the Siberian flood basalt province doubled. Science 296, 1846–9.
Renne, P. R. & Basu, A. R. 1991. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science 253, 176–9.
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. & DePaolo, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145 (1–2), 117–52.
Renne, P. R., Zichao, Z., Richards, M. A., Black, M. T. & Basu, A. R. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269, 1413–6.
Retallack, G. J. & Jahren, A. H. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology 116, 120.
Retallack, G. J. & Krull, E. S. 2006. Carbon isotopic evidence for terminal-Permian methane outbursts and their role in extinctions of animals, plants, coral reefs, and peat swamps. In Wetlands Through Time (eds Greb, S. F. & DiMichele, W. A.), pp. 249–68. Special Paper of the Geological Society of America, Special Paper no. 399.
Riccardi, A. L., Arthur, M. A. & Kump, L. R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta 70 (23), 5740–52.
Riccardi, A., Kump, L. R., Arthur, M. A. & D'Hondt, S. 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology 248 (1–2), 7381.
Richards, M. A., Duncan, R. A. & Courtillot, V. E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–7.
Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochemistry Geophysics Geosystems 8, Q12002.
Ross, P.-S., Ukstins-Peate, I., McClintock, M. K., Xu, Y. G.,Skilling, I. P., White, J. D. L. & Houghton, B. F. 2005. Mafic volcaniclastic deposits in flood basalt provinces: a review. Journal of Volcanology and Geothermal Research 145, 281314.
Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. 2005. A mantle plume origin for the Siberian Traps: uplift and extension in the West Siberian Basin, Russia. Lithos 79, 407–24.
Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J. & Kent, R. W. 1997. The North Atlantic Igneous Province. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 4593. American Geophysical Union, Monograph no. 100.
Saunders, A. D., Jones, S. M., Morgan, L. A., Pierce, K. L., Widdowson, M. & Xu, Y. G. 2007. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chemical Geology 241 (3–4), 282318.
Saunders, A. D., Larsen, H. C. & Fitton, J. G. 1998. Magmatic development of the southeast Greenland margin and evolution of the Iceland plume: geochemical constraints from Leg 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S. W. J.), pp. 479501. College Station, TX: Ocean Drilling Program.
Saunders, A. & Reichow, M. 2009. The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin 54 (1), 2037.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T. & Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327 (5970), 1214–8.
Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. 2008. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319 (5870), 1654–7.
Self, S., Thordarson, T. & Widdowson, M. 2005. Gas fluxes from flood basalt eruptions. Elements 1 (5), 283–7.
Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth and Planetary Science Letters 248 (1–2), 517–31.
Sharma, M. 1997. Siberian Traps. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 273–95. American Geophysical Union, Monograph no. 100.
Shen, J., Algeo, T. J., Zhou, L., Feng, Q., Yu, J. & Ellwood, B. 2012. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology 10 (1), 82103.
Shen, S. Z., Crowley, J. L., Wang, Y., Bowring, S. A., Erwin, D. H., Sadler, P. M., Cao, C. Q., Rothman, D. H., Henderson, C. M., Ramezani, J., Zhang, H., Shen, Y. N., Wang, X. D., Wang, W., Mu, L., Li, W. Z., Tang, Y. G., Liu, X. L., Liu, L. J., Zeng, Y., Jiang, Y. F. & Jin, Y. G. 2011. Calibrating the End-Permian Mass Extinction. Science 334 (6061), 1367–72.
Sinton, C. W., Hitchen, K. & Duncan, R. A. 1998. 40Ar−39Ar geochronology of silicic and basic volcanic rocks on the margins of the North Atlantic. Geological Magazine 135 (2), 161–70.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G.-J., Damste, J. S. S., Crouch, E. M. & Dickens, G. R. 2007. Environmental precursors to rapid light carbon injection at the Paleocene/Eocene boundary. Nature 450 (7173), 1218–21.
Smirnov, A. V. & Tarduno, J. A. 2010. Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: implications for the nature of hotspots and mantle plumes. Earth and Planetary Science Letters 297 (3–4), 687–90.
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A. & Vasiliev, Y. R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477 (7364), 312–6.
Song, H., Tong, J., Algeo, T. J., Horacek, M., Qiu, H., Song, H., Tian, L. & Chen, Z.-Q. 2013a. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change 105 (0), 720.
Song, H., Wignall, P. B., Tong, J. & Yin, H. 2013b. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience 6 (1), 52–6.
Storey, M., Duncan, R. A. & Swisher, C. C. 2007. Paleocene-Eocene thermal maximum and the opening of the northeast Atlantic. Science 316 (5824), 587–9.
Storey, M., Duncan, R. A. & Tegner, C. 2007. Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot. Chemical Geology 241 (3–4), 264–81.
Stothers, R. B. 1993. Flood basalts and extinction events. Geophysical Research Letters 20 (13), 1399–402.
Stothers, R. B., Wolff, J. A., Self, S. & Rampino, M. R. 1986. Basaltic fissure eruptions, plume heights, and atmospheric aerosols. Geophysical Research Letters 13 (8), 725–8.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L & Lai, X. 2012. Lethally hot temperatures during the early Triassic greenhouse. Science 338 (6105), 366–70.
Svensen, H., Planke, S., Chevallier, L., Malthe-Sorenssen, A., Corfu, F. & Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters 256 (3–4), 554–66.
Svensen, H., Planke, S. & Corfu, F. 2010. Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society of London 167, 433–6.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R. & Rey, S. S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–5.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y. & Jamtveit, B. 2009a. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277 (3–4), 490500.
Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. 2009b. Contact metamorphism, halocarbons, and environmental crises of the past. Environmental Chemistry 6 (6), 466–71.
Takahashi, S., Kaiho, K., Oba, M. & Kakegawa, T. 2010. A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology 292 (3–4), 532–9.
Takahashi, S., Oba, M., Kaiho, K., Yamakita, S. & Sakata, S. 2009. Panthalassic oceanic anoxia at the end of the Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 274 (3–4), 185–95.
Takahashi, S., Yamasaki, S.-I., Ogawa, Y., Kimura, K., Kaiho, K., Yoshida, T. & Tsuchiya, N. 2014. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth and Planetary Science Letters 393, 94104.
Thomas, B. C., Melott, A. L., Jackman, C. H., Laird, C. M., Medvedev, M. V., Stolarski, R. S., Gehrels, N., Cannizzo, J. K., Hogan, D. P. & Ejzak, L. M. 2005. Gamma-ray bursts and the earth: exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophysical Journal 634 (1), 509–33.
Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. 2002. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30 (12), 1067–70.
Thomas, E. 1989. Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. In Origins and Evolution of the Antarctic Biota (ed. Crame, J. A.), pp. 283–96. Geological Society of London, Special Publication no. 47.
Thomas, E. & Shackleton, N. J. 1996. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. In Correlation of the Early Paleogene in Northwest Europe (eds O'B. Knox, R. W., Corfield, R. M. & Dunay, R. E.), pp. 401–41. Geological Society of London, Special Publication no. 101.
Thomson, K. 2004. Sill complex geometry and internal architecture: a 3D seismic perspective. In Physical Geology of High-Level Magmatic Systems (eds Breitkreuz, C. & Petford, N.), pp. 229–32. Geological Society of London, Special Publication no. 234.
Thordarson, T. & Self, S. 1996. Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. Journal of Volcanology and Geothermal Research 74, 4973.
Thordarson, T. & Self, S. 2003. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. Journal of Geophysical Research 108 (D1), doi: 10.1029/2001JD002042.
Thordarson, T., Self, S., Oskarsson, N. & Hulseboch, T. 1996. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bulletin Volcanologique 58, 205–25.
Tolan, T. L., Reidel, S. P., Beeson, M. H., Anderson, J. L., Fecht, K. R. & Swanson, D. A. 1989. Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group. In Volcanism and Tectonism in the Columbia River Flood-basalt Province (eds Reidel, S. P. & Hooper, P. R.), pp. 120. Geological Society of America, Special Paper no. 239.
Twitchett, R. J. 2007. Climate change across the Permo-Triassic boundary. In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer models and Biological Proxies (eds Williams, M., Haywodd, A. M., Gregory, F. J. & Schmidt, D. N.), pp. 191200. London: The Geological Society. Special Publication of the Micropalaeontological Society.
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29 (4), 351–4.
Tyrrell, G. W. 1937. Flood basalts and fissure eruptions. Bulletin of Volcanology 1, 89111.
Vogt, P. R. 1972. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature 240 (5380), 338–42.
Wang, Y., Sadler, P. M., Shen, S.-Z., Erwin, D. H., Zhang, Y.-C., Wang, X.-D., Wang, W., Crowley, J. L. & Henderson, C. M. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40 (1), 113–29.
Westerhold, T., Roehl, U. & Laskar, J. 2012. Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochemistry Geophysics Geosystems 13, Q06015.
White, R. S. & McKenzie, D. P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94, 7685–729.
White, R. S., Spence, G. D., Fowler, S. R., McKenzie, D. P., Westbrook, G. K. & Bowen, A. N. 1987. Magmatism at rifted continental margins. Nature 330, 439–44.
White, R. V. & Saunders, A. D. 2005. Volcanism, impact and mass extinctions: incredible or credible coincidences. Lithos 79, 299316.
Wieczorek, R., Fantle, M. S., Kump, L. R. & Ravizza, G. 2013. Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum. Geochimica et Cosmochimica Acta 119, 391410.
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53 (1–2), 133.
Wignall, P. B. & Hallam, A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93 (1–2), 2146.
Wignall, P. B., Morante, R. & Newton, R. 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies fauna and trace fossils. Geological Magazine 135 (1), 4762.
Wignall, P. B. & Newton, R. 2003. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18 (2), 153–67.
Wignall, P. B. & Twitchett, R. J. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–8.
Wooden, J. L., Czamanske, G. K., Fedorenko, V. A., Arndt, N. T., Chauvel, C., Bouse, R. M., King, B. W., Knight, R. J. & Siems, D. F. 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochimica et Cosmochimica Acta 57, 3677–704.
Wotzlaw, J.-F., Bindeman, I. N., Schaltegger, U., Brooks, C. K. & Naslund, H. R. 2012. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth and Planetary Science Letters 355–356(0), 199212.
Wright, J. D. & Schaller, M. F. 2013. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences 110 (40), 15908–13.
Zachos, J. C., McCarren, H., Murphy, B., Roehl, U. & Westerhold, T. 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299 (1–2), 242–9.
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (5517), 686–93.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicola, M., Raffi, I., Lourens, L. J., McCarren, H. & Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–15.
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J. & Premoli-Silva, I. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302 (5650), 1551–4.
Zeebe, R. E. 2013. What caused the long duration of the Paleocene-Eocene Thermal Maximum? Paleoceanography 28 (3), 440–52.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed