Skip to main content
×
Home
    • Aa
    • Aa

U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province

  • FERNANDO CORFU (a1), STÉPHANE POLTEAU (a2), SVERRE PLANKE (a2), JAN INGE FALEIDE (a1), HENRIK SVENSEN (a3), ANDREW ZAYONCHECK (a4) (a5) and NIKOLAY STOLBOV (a5)...
Abstract
Abstract

The opening of the Arctic oceanic basins in the Mesozoic and Cenozoic proceeded in steps, with episodes of magmatism and sedimentation marking specific stages in this development. In addition to the stratigraphic record provided by sediments and fossils, the intrusive and extrusive rocks yield important information on this evolution. This study has determined the ages of mafic sills and a felsic tuff in Svalbard and Franz Josef Land using the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb method on zircon, baddeleyite, titanite and rutile. The results indicate crystallization of the Diabasodden sill at 124.5 ± 0.2 Ma and the Linnévatn sill at 124.7 ± 0.3 Ma, the latter also containing slightly younger secondary titanite with an age of 123.9 ± 0.3 Ma. A bentonite in the Helvetiafjellet Formation, also on Svalbard, has an age of 123.3 ± 0.2 Ma. Zircon in mafic sills intersected by drill cores in Franz Josef Land indicate an age of 122.7 Ma for a thick sill on Severnaya Island and a single grain age of ≥122.2 ± 1.1 Ma for a thinner sill on Nagurskaya Island. These data emphasize the importance and relatively short-lived nature of the Cretaceous magmatic event in the region.

Copyright
Corresponding author
Author for correspondence: fernando.corfu@geo.uio.no
References
Hide All
Alvey A., Gaina C., Kusznir N. J. & Torsvik T. H. 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters 274, 310–21.
Amundsen H., Evdokimov A., Dibner V. & Andresen A. 1998. Petrogenic significance and evolution of Mesozoic magmatism, Franz Josef Land, northeastern Barents Sea. In Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse (eds Solheim A., Musatov E. & Heintz N.) pp. 105–20. Norsk Polarinstitutt Meddelelser 151.
Buchan K. L. & Ernst R. E. 2006. Giant dyke swarms and the reconstruction of the Canadian Arctic islands, Greenland, Svalbard, and Franz Josef Land. In Dyke Swarms—Time Markers of Crustal Evolution (eds Hanski E., Mertanen S., Rämö T. & Vuollo J.), pp. 2748. Taylor & Francis, London, UK.
Charles A. J., Condon D. J., Harding I. C., Pälike H., Marshall J. E. A., Cui Y., Kump L. & Croudace I. W. 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry Geophysics Geosystems 12, Q0AA17, doi:10.1029/2010GC003426.
Corfu F. 2004. U-Pb age, setting, and tectonic significance of the anorthosite-mangerite-charnockite-granite-suite, Lofoten-Vesterålen, Norway. Journal of Petrology 45, 1799–819.
Davis W. J. & Davis D. W. 2010. Alpha recoil loss from baddeleyite evaluated by depth profiling and numerical modelling: implications for U-Pb ages. Goldschmidt Conference Abstracts, Geochimica et Cosmochimica Acta 74 (11), A213.
Dibner V. D. (ed.) 1998. Geology of Franz Jozef Land. Norsk Polarinstitutt, Meddelelser 146, 190 p.
Dypvik H., Fjellså B., Pcelina T. M., Sokolov A & Råheim A. 1998. The diagenetic of the Triassic succession of Franz Josef Land. In Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse (eds Solheim A., Musatov E. & Heintz N.), pp. 83104. Norsk Polarinstitutt Meddelelser 151.
Ernst R. & Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47, 695739.
Faleide J. I., Tsikalas F., Breivik A. J., Mjelde R., Ritzmann O., Engen Ø., Wilson J. & Eldholm O. 2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31, 8291.
Grachev A. F. 2000. Mantle plumes and the problems of Geodynamics. Isvestiya, Physics of the Solid Earth 36, 263–94.
Grachev A. F., Arakelyantz M. M., Lebedev V. A., Musatov E. E. & Stolbov N. M. 2001. New K-Ar ages for basalts from Franz Josef Land. Russian Journal of Earth Sciences 3, 7982.
Grogan P., Nyberg K., Fotland B., Myklebust R., Dahlgren S. & Riis F. 2000. Cretaceous magmatism south and east of Svalbard: evidence from seismic reflection and magnetic data. Polarforschung 68, 2534.
Harland W. B, Lester M., Anderson L. M. & Manasrah D. (eds) 1997. The Geology of Svalbard. Geological Society, London, Memoirs 17.
Jaffey A. H., Flynn K. F., Glendenin L. E., Bentley W. C. & Essling A. M. 1971. Precision measurement of half‑lives and specific activities of 235U and 238U. Physical Review, Section C, Nuclear Physics 4, 1889–906.
Krogh T. E. 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.
Krogh T. E. 1982. Improved accuracy of U‑Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.
Levskii L. K., Stolbov N. M., Bogomolov E. S., Vasil'eva I. M. & Makar'eva E. M. 2006. Sr–Nd–Pb isotopic systems in basalts of the Franz Josef Land archipelago. Geochemistry International 44, 327–37.
Ludwig K. R. 2009. Isoplot 4.1. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 76.
Maher H. D. 2001. Manifestations of Cretaceous High Arctic large igneous province in Svalbard. Journal of Geology 109, 91104.
Mattinson J. M. 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275, 186–98.
Minakov A., Mjelde R., Faleide J. I., Flueh E. R., Dannowski A. & Keers H. 2012. Mafic intrusions east of Svalbard imaged by active-source seismic tomography. Tectonophysics 518–521, 106–18.
Nejbert K., Krajewski K. P., Dubinska E. & Pecskay Z. 2011. Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Research 30, 7306, doi: 10.3402/polar.v30i0.7306.
Piskarev A. L., Heunemann Ch., Makar'ev A. A., Makar'eva E. M., Bachtadse V. & Aleksyutin M. 2009. Magnetic parameters and variations in the composition of magmatic rocks from the Franz Josef Land archipelago. Physics of the Earth 2, 6683.
Schärer U. 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters 67, 191204.
Solheim A., Musatov E. E., Heintz N. & Elverhøi A. 1998. Geological evolution and correlation between Franz Josef Land and Svalbard. The Northern Barents Sea Geotraverse: introduction to the project. In Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse (eds Solheim A., Musatov E. & Heintz N.), pp. 59. Norsk Polarinstitutt Meddelelser 151.
Stacey J. S. & Kramers J. D. 1975. Approximation of terrestrial lead isotope evolution using a two-stage model. Earth and Planetary Science Letters 26, 221–97.
Svensen H., Planke S. & Corfu F. 2010. Zircon dating ties Northeast Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, London 167, 433–6.
Svensen H., Corfu F., Polteau S., Hammer Ø. & Planke S. 2012. Rapid Magma Emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters 325–326, 19.
Tarakhovsky A. N., Fishman M. V., Shkola I. V. & Andreichev V. L. 1983. The age of the traps of the Fanz Josef Land. In Prediction and Estimation of the Nickel Content of New Metalliferous Areas on the Northern Part of the Siberian Platform (ed. Kavardin, G. I.), Sevmorgeologia, Leningrad (in Russian), pp. 100–8.
Thorarinsson S. B., Holm P. M., Tappe S., Heaman L. M. & Tegner C. 2011. Late Cretaceous–Palaeocene continental rifting in the High Arctic: U–Pb geochronology of the Kap Washington Group volcanic sequence, North Greenland. Journal of the Geological Society, London 168, 1093–106.
Trettin H. P. & Parrish R. 1987. Late Cretaceous bimodal magmatism, northern Ellesmere Island: isotopic age and origin. Canadian Journal of Earth Sciences 24, 257–65.
Worsley D. 2008. The post-Caledonian development of Svalbard and the western Barents Sea. Polar Research 27, 298317.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Corfu Supplementary Material
Table S1 and Figure S1

 Word (589 KB)
589 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 209 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.