Skip to main content
    • Aa
    • Aa

U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province


The opening of the Arctic oceanic basins in the Mesozoic and Cenozoic proceeded in steps, with episodes of magmatism and sedimentation marking specific stages in this development. In addition to the stratigraphic record provided by sediments and fossils, the intrusive and extrusive rocks yield important information on this evolution. This study has determined the ages of mafic sills and a felsic tuff in Svalbard and Franz Josef Land using the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb method on zircon, baddeleyite, titanite and rutile. The results indicate crystallization of the Diabasodden sill at 124.5 ± 0.2 Ma and the Linnévatn sill at 124.7 ± 0.3 Ma, the latter also containing slightly younger secondary titanite with an age of 123.9 ± 0.3 Ma. A bentonite in the Helvetiafjellet Formation, also on Svalbard, has an age of 123.3 ± 0.2 Ma. Zircon in mafic sills intersected by drill cores in Franz Josef Land indicate an age of 122.7 Ma for a thick sill on Severnaya Island and a single grain age of ≥122.2 ± 1.1 Ma for a thinner sill on Nagurskaya Island. These data emphasize the importance and relatively short-lived nature of the Cretaceous magmatic event in the region.

Corresponding author
Author for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Alvey , C. Gaina , N. J. Kusznir & T. H. Torsvik 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters 274, 310–21.

K. L. Buchan & R. E. Ernst 2006. Giant dyke swarms and the reconstruction of the Canadian Arctic islands, Greenland, Svalbard, and Franz Josef Land. In Dyke Swarms—Time Markers of Crustal Evolution (eds E. Hanski , S. Mertanen , T. Rämö & J. Vuollo ), pp. 2748. Taylor & Francis, London, UK.

A. J. Charles , D. J. Condon , I. C. Harding , H. Pälike , J. E. A. Marshall , Y. Cui , L. Kump & I. W. Croudace 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry Geophysics Geosystems 12, Q0AA17, doi:10.1029/2010GC003426.

F. Corfu 2004. U-Pb age, setting, and tectonic significance of the anorthosite-mangerite-charnockite-granite-suite, Lofoten-Vesterålen, Norway. Journal of Petrology 45, 1799–819.

A. F. Grachev , M. M. Arakelyantz , V. A. Lebedev , E. E. Musatov & N. M. Stolbov 2001. New K-Ar ages for basalts from Franz Josef Land. Russian Journal of Earth Sciences 3, 7982.

A. H. Jaffey , K. F. Flynn , L. E. Glendenin , W. C. Bentley & A. M. Essling 1971. Precision measurement of half‑lives and specific activities of 235U and 238U. Physical Review, Section C, Nuclear Physics 4, 1889–906.

T. E. Krogh 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.

T. E. Krogh 1982. Improved accuracy of U‑Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.

L. K. Levskii , N. M. Stolbov , E. S. Bogomolov , I. M. Vasil'eva & E. M. Makar'eva 2006. Sr–Nd–Pb isotopic systems in basalts of the Franz Josef Land archipelago. Geochemistry International 44, 327–37.

H. D. Maher 2001. Manifestations of Cretaceous High Arctic large igneous province in Svalbard. Journal of Geology 109, 91104.

J. M. Mattinson 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275, 186–98.

K. Nejbert , K. P. Krajewski , E. Dubinska & Z. Pecskay 2011. Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Research 30, 7306, doi: 10.3402/polar.v30i0.7306.

U. Schärer 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters 67, 191204.

J. S. Stacey & J. D. Kramers 1975. Approximation of terrestrial lead isotope evolution using a two-stage model. Earth and Planetary Science Letters 26, 221–97.

H. Svensen , S. Planke & F. Corfu 2010. Zircon dating ties Northeast Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, London 167, 433–6.

S. B. Thorarinsson , P. M. Holm , S. Tappe , L. M. Heaman & C. Tegner 2011. Late Cretaceous–Palaeocene continental rifting in the High Arctic: U–Pb geochronology of the Kap Washington Group volcanic sequence, North Greenland. Journal of the Geological Society, London 168, 1093–106.

H. P. Trettin & R. Parrish 1987. Late Cretaceous bimodal magmatism, northern Ellesmere Island: isotopic age and origin. Canadian Journal of Earth Sciences 24, 257–65.

D. Worsley 2008. The post-Caledonian development of Svalbard and the western Barents Sea. Polar Research 27, 298317.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Corfu Supplementary Material
Table S1 and Figure S1

 Word (589 KB)
589 KB


Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 150 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.