Skip to main content
×
×
Home

U–Th–Pb systematics in zircon and apatite from the Chicxulub impact crater, Yucatán, Mexico

  • MARTIN SCHMIEDER (a1) (a2), BARRY J. SHAULIS (a1) (a2), THOMAS J. LAPEN (a3) and DAVID A. KRING (a1) (a2)
Abstract
Abstract

This work presents a systematic study of zircon and apatite in melt-bearing impactites from the annular trough of the ~180 km and ~66.04 Ma Chicxulub impact crater, Yucatán, Mexico, using in situ laser ablation – inductively coupled plasma mass spectrometry, in which the petrologic context of the analysed minerals was assessed. Geochronologic U–Pb results for variably shocked zircon from the Yaxcopoil-1 core, including monocrystalline grains and neocrystallised granular aggregates, yielded a discordant array of ages representing the Early Palaeozoic age of the crystalline–metamorphic Maya block in the crater basement and the timing of the Chicxulub impact, respectively, and provide evidence for impact-induced resetting of the U–Pb system. Zircon and fluor-chlorapatite from the Yaxcopoil-1 core, and fluorapatite in clasts of impact melt from the Yucatán-6 core have low 206Pb/204Pb, suggesting the presence of detectable common Pb. The Chicxulub impactites were altered in an initially hot hydrothermal system that lasted up to ~2 Myr; locally, Pb-rich sulphides precipitated. Hydrothermal conditions did not reset the U–Th–Pb systematics of relict zircon, however, due to elevated closure temperatures for Pb diffusion at the fast cooling rates associated with the crater locations of the Yucatán-6 and Yaxcopoil-1 boreholes. Thus, the zircon preserves pre-impact and impact-related ages, rather than those of the hydrothermal system. In contrast, no useful geochronologic information was obtained from relict apatite, because common Pb in these grains overwhelmed radiometrically derived isotope ratios.

Copyright
Corresponding author
Author for correspondence: schmieder@lpi.usra.edu
References
Hide All
Åberg G. & Bollmark B. 1985. Retention of U and Pb in zircons from shocked granite in the Siljan impact structure, Sweden. Earth and Planetary Science Letters 74, 347–9.
Abramov O. & Kring D. A. 2007. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteoritics & Planetary Science 42, 93112.
Abramov O., Kring D. A. & Mojzsis S. J. 2013. The impact environment of the Hadean Earth. Chemie der Erde – Geochemistry 73, 227–48.
Alvarez L. W., Alvarez W., Asaro F. & Michel H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–108.
Ames D. E., Kjarsgaard I. M., Pope K. O., Dressler B. & Pilkington M. 2004. Secondary alteration of the impactite and mineralization in the basal Tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science 39, 1145–67.
Ames D. E., Watkinson D. H. & Parrish R. R. 1998. Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26, 447–50.
Black L. P., Kamo S. L., Allen C. M., Aleinikoff J. N., Davis D. W., Korsch R. J. & Foudoulis C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.
Bohor B. F., Betterton W. J. & Krogh T. E. 1993. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters 119, 419–24.
Boyce J. W. & Hodges K. V. 2005. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: insights regarding the impact of recoil redistribution of radiogenic 4He on (U–Th)/He thermochronology. Chemical Geology 219, 261–74.
Cavosie A. J., Erickson T. M. & Timms N. E. 2015. Nanoscale records of ancient shock deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology 43, 315–18.
Cavosie A. J. & Lugo Centeno C. 2014. Shocked apatite from the Santa Fe Impact Structure (USA): a new accessory mineral for studies of shock metamorphism. 45th Lunar and Planetary Science Conference (The Woodlands, Texas, 17–21 March, 2014), LPI Contribution 1777, abstract no. 1691. Houston, TX: Lunar and Planetary Institute.
Cavosie A. J., Timms N. E., Erickson T. M., Hagerty J. J. & Hörz F. 2016. Transformations to granular zircon revealed: twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA). Geology 44, 703–6.
Chamberlain K. R. & Bowring S. A. 2001. Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (~450°C), diffusion-controlled system. Chemical Geology 172, 173200.
Chang Z., Vervoort J. D., McClelland W. C. & Knaack C. 2006. U–Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems 7, Q05009. doi: 10.1029/2005GC001100.
Cherniak D. J. 2010. Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. In Diffusion in Minerals and Melts (eds Zhang Y. & Cherniak D. J.), pp. 827–69. Reviews in Mineralogy and Geochemistry 72.
Cherniak D. J., Lanford W. A. & Ryerson F. J. 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta 55, 1663–73.
Cherniak D. J. & Watson E. B. 2001. Pb diffusion in zircon. Chemical Geology 172, 524.
Chew D. M., Petrus J. A. & Kamber B. S., 2014. U-Pb La-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363, 185–99.
Chew D. M., Sylvester P. J. & Tubrett M. N. 2011. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chemical Geology 280, 200–16.
Claeys Ph., Heuschkel S., Lounejeva-Baturina E., Sanchez-Rubio G. & Stöffler D. 2003. The suevite of drill hole Yucatán 6 in the Chicxulub impact crater. Meteoritics & Planetary Science 38, 1299–317.
Clyde W. C., Ramezani J., Johnson K. R., Bowring S. A. & Jones M. M. 2016. Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters 452, 272–80.
Compston W., Williams I. S., Kirschvink J. L., Zichao Z. & Guogan M. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.
Crow C. A., Jacobsen B., Moser D. E., McKeegan K. D. & Weber P. K. 2016. NanoSIMS U-Pb dating of shocked zircons. 79th Annual Meeting of the Meteoritical Society (Berlin, Germany, 7–12 August, 2016), LPI Contribution 1921, abstract no. 6507. Houston, TX: Lunar and Planetary Institute.
Cumming G. L., Kesler S. E. & Krstic D. 1981. Source of lead in Central American and Caribbean mineralization, II. Lead isotope provinces. Earth and Planetary Science Letters 56, 199209.
Dempster T. J., Jolivet M., Tubrett M. N., & Braithwaite C. J. R. 2003. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology 145, 568–77.
Deutsch A. & Schärer U. 1994. Dating terrestrial impact events. Meteoritics 29, 301–22.
Dodson M. H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259–74.
Dressler B. O., Sharpton V. L., Schwandt C. S. & Ames D. 2004. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: petrography, geochemistry, and depositional environment. Meteoritics & Planetary Science 39, 857–78.
El Goresy A. 1965. Baddeleyite and its significance in impact glasses. Journal of Geophysical Research, 70, 3453–6.
Ganapathy R. 1980. A major meteorite impact on the Earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209, 921–3.
Geisler T., Pidgeon R. T., Van Bronswijk W. & Kurtz R. 2002. Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chemical Geology 191, 141–54.
Geisler T., Rashwan A. A., Rahn M. K. W., Poller U., Zwingmann H., Pidgeon R. T., Schleicher H. & Tomaschek F. 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine 67, 485508.
Gleason J. D., Gehrels G. E., Dickinson W. R., Patchett P. J. & Kring D. A. 2007. Laurentian sources for detrital zircon grains in turbidite and deltaic sandstones of the Pennsylvanian Haymond Formation, Marathon assemblage, west Texas, USA. Journal of Sedimentary Research 77, 888900.
Grieve R. A. F. 2005. Economic natural resource deposits at terrestrial impact structures. In Mineral Deposits and Earth Evolution (eds McDonald I., Butler I. B., Hetherington R. J. and Polya D. A.), pp. 129. Geological Society of London, Special Publication no. 248.
Grieve R. A. F. & Masaitis V. L. 1994. The economic potential of terrestrial impact craters. International Geology Review 36, 105–51.
Griffith E. M. & Paytan A. 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–35.
Harrison T. M., Catlos E. J. & Montel J. M. 2002. U-Th-Pb dating of phosphate minerals. In Phosphates – Geochemical, Geobiological, and Materials Importance (eds Kohn M. L., Rakovan J. & Hughes J. M.), pp. 524–58. Reviews in Mineralogy and Geochemistry 48.
Hart R. J., Andreoli M. A., Tredoux M., Moser D., Ashwal L. D., Eide E. A., Webb S. J. & Brandt D. 1997. Late Jurassic age for the Morokweng impact structure, southern Africa. Earth and Planetary Science Letters, 147, 2535.
Hausrath E. M., Golden D. C., Morris R. V., Agresti D. G. & Ming D. W. 2013. Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars. Journal of Geophysical Research: Planets 118, 113.
Hecht L., Wittmann A., Schmitt R.-T. & Stöffler D. 2004. Composition of impact melt particles and the effects of post-impact alteration in suevitic rocks at the Yaxcopoil-1 drill core, Chicxulub crater, Mexico. Meteoritics & Planetary Science 39, 1169–86.
Hellstrom J., Paton C., Woodhead J. & Hergt J. 2008. Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. In Laser Ablation ICPMS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester P.), pp. 343–8. Mineralogical Association of Canada short course series 40.
Hildebrand A. R., Penfield G. T., Kring D. A., Pilkington M., Camargo-Zanoguera A., Jacobsen S. B. & Boynton W. V. 1991. Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–71.
Hodych J. P. & Dunning G. R. 1992. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20, 51–4.
Ireland T. R. & Williams I. S. 2003. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry 53, 215–41.
Izett G. A. 1991. Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez Impact Extinction Hypothesis. Journal of Geophysical Research: Planets 96, 20, 879905.
Jackson S. E., Pearson N. J., Griffin W. L. & Belousova E. A. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.
Jaffey A. H., Flynn K. F., Glendenin L. E., Bentley W. C. & Essling A. M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.
Johansson Å. 1984. Geochemical studies on the Boda Pb-Zn deposit in the Siljan astrobleme, central Sweden. GFF 106, 1525.
Joy K. H., Nemchin A., Grange M., Lapen T. J., Peslier A. H., Ross D. K., Zolensky M. E. & Kring D. A. 2014. Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449. Geochimica et Cosmochimica Acta 144, 299325.
Kalleson E., Corfu F. & Dypvik H. 2009 U–Pb systematics of zircon and titanite from the Gardnos impact structure, Norway: evidence for impact at 546Ma? Geochimica et Cosmochimica Acta 73, 3077–92.
Kamo S. L. & Krogh T. E. 1995. Chicxulub crater source for shocked zircon crystals from the Cretaceous-Tertiary boundary layer, Saskatchewan: evidence from new U-Pb data. Geology 23, 281–4.
Kamo S. L., Lana C. & Morgan J. V. 2011. U–Pb ages of shocked zircon grains link distal K–Pg boundary sites in Spain and Italy with the Chicxulub impact. Earth and Planetary Science Letters 310, 401–8.
Kent A. J. R. 2008. Lead isotope homogeneity of NIST SRM 610 and 612 glass reference materials: constraints from Laser Ablation Multicollector ICP-MS (LA-MC-ICP-MS) Analysis. Geostandards and Geoanalytical Research 32, 129–47.
Keppie J. D., Dostal J., Norman M., Urrutia-Fucugauchi J. & Grajales-Nishimura M. 2011. Study of melt and a clast of 546 Ma magmatic arc rocks in the 65 Ma Chicxulub bolide breccia, northern Maya block, Mexico: western limit of Ediacaran arc peripheral to northern Gondwana. International Geology Review 53, 1180–93.
Koeberl C., Armstrong R. A. & Reimold W. U. 1997. Morokweng, South Africa: a large impact structure of Jurassic-Cretaceous boundary age. Geology 25, 731–4.
Kring D. A. 1995. The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research 100 (E8), 16,979–86.
Kring D. A. 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (~24 km) and Chicxulub (~180 km) impact craters. Chemie der Erde (Geochemistry) 65, 146.
Kring D. A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255, 421.
Kring D. A. & Boynton W. V. 1991. Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochimica et Cosmochimica Acta 55, 1737–42.
Kring D. A. & Boynton W. V. 1992. Petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature 358, 141–4.
Kring D. A., Hildebrand A. R. & Boynton W. V. 1991. The petrology of an andesitic melt rock and a polymict breccia from the interior of the Chicxulub structure, Yucatán, Mexico. Lunar and Planetary Science Conference XXII, Abstracts of Papers, 755–6. Houston, TX: Lunar and Planetary Science Institute.
Kring D. A., Hörz F., Zürcher L. & Urrutia-Fucugauchi J. 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics & Planetary Science 39, 879–97.
Krogh T. E. 1982. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.
Krogh T. E., Davis D. W. & Corfu F. 1984. Precise U-Pb zircon and baddeleyite ages for the Sudbury area. In The Geology and Ore Deposits of the Sudbury Structure (eds Pye E. G., Naldrett A. J. & Giblin P. E.), pp. 431–46. Ontario Geological Survey Special Volume 1.
Krogh T. E., Kamo S. L. & Bohor B. F. 1993. Fingerprinting the K/T impact site and determining the time of impact by U–Pb dating of single shocked zircons from distal ejecta. Earth and Planetary Science Letters 119, 425–9.
Krogh T. E., Kamo S. L. & Bohor B. F. 1996. Shock metamorphosed zircons with correlated U-Pb discordance and melt rocks with concordant Protolith ages indicate an impact origin for the Sudbury Structure. In Earth Processes: Reading the Isotopic Code (eds Basu A. & Hart S.), pp. 343–53. Geophysical Monograph Series, vol. 95.
Krogh T. E., Kamo S. L., Sharpton V. L., Marín L. E. & Hildebrand A. R. 1993. U–Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366, 731–4.
Krogh T. E., McNutt R. H. & Davis G. L. 1982. Two high precision U-Pb zircon ages for the Sudbury Nickel Irruptive. Canadian Journal of Earth Sciences 19, 723–8.
Kyte F. T., Zhou Z. & Wasson J. T. 1980. Siderophile-enriched sediments from the Cretaceous-Tertiary boundary. Nature 288, 651–6.
Lapen T. J., Kring D. A., Zolensky M. E., Andreasen R., Righter M., Swindle T. D. & Beard S. P. 2014. Uranium-lead isotope evidence in the Chelyabinsk LL5 chondrite meteorite for ancient and recent thermal events. 45th Lunar and Planetary Science Conference (The Woodlands, TX, USA, 17–21 March, 2014), LPI Contribution 1777, abstract no. 2561. Houston, TX: Lunar and Planetary Institute.
Lee J. K. W., Williams I. S. & Ellis D. J. 1997. Pb, U and Th diffusion in natural zircon. Nature 390, 159–62.
Lopez Ramos E. 1975. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds Nairn A. E. M. & Stehli F. G.), pp. 257–82. New York: Springer.
Ludwig K. R. 2008. User's Manual for Isoplot 3.75 – A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 5, revised 30 January 2012. Available online at http://www.bgc.org/isoplot_etc/isoplot.html.
Mänttäri I. & Koivisto M. 2001. Ion microprobe uranium–lead dating of zircons from the Lappajärvi impact crater, western Finland. Meteoritics & Planetary Science 36, 1087–95.
Marchi S., Bottke W. F., Elkins-Tanton L. T., Bierhaus M., Wünnemann K., Morbidelli A. & Kring D. A. 2014. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511, 578–82.
Mattinson J. M. 2005. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.
Mayr S. I., Burkhardt H., Popov Yu. & Wittmann A. 2008 a. Estimation of hydraulic permeability considering the micro morphology of rocks of the borehole YAXCOPOIL-1 (Impact crater Chicxulub, Mexico). International Journal of Earth Sciences 97, 385–99.
Mayr S. I., Wittmann A., Burkhardt H., Popov Yu., Romushkevich R., Bayuk I., Heidinger P. & Wilhelm H. 2008 b. Integrated interpretation of physical properties of rocks of the borehole Yaxcopoil-1 (Chicxulub impact structure). Journal of Geophysical Research: Solid Earth 113 (B7), B07201. doi: 10.1029/2007JB005420.
McCarville P. & Crossey L. J. 1996. Post-impact hydrothermal alteration of the Manson impact structure. In The Manson Impact Structure, Iowa; Anatomy of an Impact Crater (eds Koeberl C. & Anderson R. R.), pp. 347–76. Geological Society of America Special Paper 302.
McGregor M., McFarlane C. R. M. & Spray J. G. 2017. The Nicholson Lake impact structure, Canada: shock features and age of formation. Lunar and Planetary Science Conference XLVIII, abstract no. 2151. Houston, TX: Lunar and Planetary Institute.
Morgan J. V., Gulick S. P. S., Bralower T., Chenot E., Christeson G., Claeys Ph., Cockell C., Collins G. S., Coolen M. J. L., Ferrière L., Gebhardt C., Goto K., Jones H., Kring D. A., Le Ber E., Lofi J., Long X., Lowery C., Mellett C., Ocampo-Torres R., Osinski G. R., Perez-Cruz L., Pickersgill A., Poelchau M., Rae A., Rasmussen C., Rebolledo-Vieyra M., Riller U., Sato H., Schmitt D. R., Smit J., Tikoo S., Tomioka N., Urrutia-Fucugauchi J., Whalen M., Wittmann A., Yamaguchi K. E. & Zylberman W. 2016. The formation of peak rings in large impact craters. Science 354, 878–82.
Moser D. E., Cupelli C. L., Barker I. R., Flowers R. M., Bowman J. R., Wooden J. & Hart J. R. 2011. New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th)/He analysis of the Vredefort dome. Canadian Journal of Earth Sciences 48, 117–39.
Naldrett A. J. 2003. From impact to riches: evolution of geological understanding as seen at Sudbury, Canada. GSA Today, February, 49.
Naumov M. V. 2005. Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 5, 165–84.
Nédélec A., Paquette J. L., Yokoyama E., Trindade R. I., Aigouy T. & Baratoux D. 2013. In situ U/Pb dating of impact-produced zircons from the Vargeão Dome (Southern Brazil). Meteoritics & Planetary Science 48, 420–31.
Nelson M. J., Newsom H. E., Spilde M. N. & Salge T. 2012. Petrographic investigation of melt and matrix relationships in Chicxulub crater Yaxcopoil-1 brecciated melt rock and melt rock-bearing suevite (846–885m, units 4 and 5). Geochimica et Cosmochimica Acta 86, 120.
Nemchin A. A., Pidgeon R. T., Healy D., Grange M. L., Whitehouse M. J. & Vaughan J. 2009. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteoritics & Planetary Science 44, 1717–34.
Newsom H. E., Nelson M. J., Shearer C. K. & Dressler B. O. 2006. Mobile element analysis by secondary ion mass spectrometry (SIMS) of impactite matrix samples from the Yaxcopoil-1 drill core in the Chicxulub impact structure. Meteoritics & Planetary Science 41, 1929–45.
Newsom H. E., Salge T., Nelson M. J. & Spilde M. N. 2010. Discovery of andradite garnet and evidence for high temperature hydrothermal processes (>300°C) in the lower Yaxcopoil-1 impact-melt. Lunar Planetary Science Conference XLI, abstract no. 1751. Houston, TX: Lunar and Planetary Institute.
Onorato P. I. K., Uhlmann D. R. & Simonds C. H. 1978. The thermal history of the Manicouagan impact melt sheet, Quebec. Journal of Geophysical Research 83 (B6), 2789–98.
Paces J. B. & Miller J. D. Jr 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System, Journal of Geophysical Research 98 (B8), 13,99714,013.
Pirajno F., Hawke P., Glikson A. Y., Haines P. W. & Uysal T. 2003. Shoemaker impact structure, Western Australia. Australian Journal of Earth Sciences 50, 775–96.
Popov Yu., Romushkevich R., Bayuk I., Korobkov D., Mayr S., Burkhardt H. & Wilhelm H. 2004. Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater. Meteoritics & Planetary Science 39, 799812.
Reimold W. U., Koeberl C., Gibson R. L. & Dressler B. O. 2005. Economic mineral deposits in impact structures: a review. In Impact Tectonics (eds Koeberl C. & Henkel H.), pp. 479552.Berlin, Heidelberg: Springer.
Renne P. R., Deino A. L., Hilgen F. J., Kuiper K. F., Mark D. F., Mitchell W. S., Morgan L. E., Mundil R. & Smit J. 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–7.
Salge T. & Newsom H. 2010. Resorbed andradite garnet in the Lower Yaxcopoil-1 impact melt breccia: evidence for hydrothermal processes at T>300°C. Meteoritics and Planetary Science 73, 5337 (abstract).
Salisbury J. A., Tomkins A. G. & Schaefer B. F. 2008. New insights into the size and timing of the Lawn Hill impact structure: relationship to the Century Zn–Pb deposit. Australian Journal of Earth Sciences 55, 587603.
Schaltegger U., Schmitt A. K. & Horstwood M. S. A. 2015. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chemical Geology 402, 89110.
Schärer U. & Deutsch A. 1990. Isotope systematics and shock-wave metamorphism: II. U-Pb and Rb-Sr in naturally shocked rocks; the Haughton Impact Structure, Canada. Geochimica et Cosmochimica Acta 54, 3435–47.
Schmieder M. & Jourdan F. 2013. The Lappajärvi impact structure (Finland): age, duration of crater cooling, and implications for early life. Geochimica et Cosmochimica Acta 112, 321–39.
Schmieder M., Kring D. A, Chenot E., Christeson G., Claeys Ph., Cockell C., Coolen M. J. L., Ferrière L., Gebhardt C., Goto K., Gulick S. P. S., Jones Liu H. S. H. Lofi J., Lowery C., Mellett C., Morgan J. V., Ocampo-Torres R., Perez-Cruz L., Pickersgill A., Poelchau M., Rae A., Rasmussen C., Rebolledo-Vieyra M., Riller U., Sato H., Smit J., Tikoo-Schantz S., Tomioka N., Urrutia-Fucugauchi J., Whalen M., Wittmann, Xiao L., Xiao Z. Y., Yamaguchi K. E., Zhao J. W. & Zylberman W. 2017. Petrology of target dolerite in the Chicxulub peak ring and a possible source of K/Pg boundary picotite spinel. 48th Lunar and Planetary Science Conference (The Woodlands, TX, USA 20–24 March 2017), abstract no. 1235. Houston, TX: Lunar and Planetary Institute.
Schmieder M., Tohver E., Jourdan F., Denyszyn S. W. & Haines P. W. 2015. Zircons from the Acraman impact melt rock (South Australia): shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochimica et Cosmochimica Acta 161, 71100.
Schulte P., Alegret L., Arenillas I., Arz J. A., Barton P. J., Bown P. R., Bralower T. J., Christeson G. L., Claeys Ph., Cockell C. S., Collins G. S., Deutsch A., Goldin T. J., Goto K., Grajales-Nishimura J. M., Grieve R. A. F., Gulick S. P. S., Johnson K. R., Kiessling W., Koeberl C., Kring D. A., MacLeod K. G., Matsui T., Melosh H. J., Montanari A., Morgan J. V., Neal C. R., Nichols D. J., Norris R. D., Pierazzo E., Ravizza G., Rebolledo-Vieyra M., Reimold W.-U., Robin E., Salge T., Speijer R. P., Sweet A. R., Urrutia-Fucugauchi J., Vajda V., Whalen M. T. & Willumsen P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–18.
Sharpton V. L., Dalrymple G. B., Marín L. E., Ryder G., Schuraytz B. C. & Urrutia-Fucugauchi J. 1992. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature 359, 819–21.
Sharpton V. L., Marín L. E., Carney J. L., Lee S., Ryder G., Schuraytz B. C., Sikora P. & Spudis P. D. 1996. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History (eds Ryder G, Fastovsky D. E. & Gartner S.), pp. 5574. Geological Society of America Special Paper 307.
Shaulis B. J., Lapen T. J., Casey J. F. & Reid D. R. 2012. Timing and rates of flysch sedimentation in the Stanley Group, Ouachita Mountains, Oklahoma and Arkansas, USA: constraints from U-Pb zircon ages of subaqueous ash-flow tuffs. Journal of Sedimentary Research 82, 833–40.
Shaulis B. J., Lapen T. J. & Toms A. 2010. Signal linearity of an extended range pulse counting detector: applications to accurate and precise U–Pb dating of zircon by laser ablation quadrupole ICP-MS. Geochemistry, Geophysics, Geosystems 11, Q0AA11. doi: 10.1029/2010GC003198.
Sigurdsson H., Bonté P., Turpin L., Chaussidon M., Metrich N., Steinberg M., Pradel P. & d'Hondt S. 1991. Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353, 839–42.
Singleton A. C., Osinski G. R. & Shieh S. R. 2015. Microscopic effects of shock metamorphism in zircons from the Haughton impact structure, Canada. In Large Meteorite Impacts and Planetary Evolution V (eds Osinski G. R. & Kring D. A.), pp. 135–48. Geological Society of America Special Paper 518.
Sláma J., Košler J., Condon D. J., Crowley J. L., Gerdes A., Hanchar J. M., Horstwood M. S. A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M. N. & Whitehouse M. J. 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.
Smit J. 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences 27, 75113.
Smit J. & Hertogen J. 1980. An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285, 198200.
Spear F. S. & Pyle J. M. 2002. Apatite, monazite, and xenotime in metamorphic rocks. In Phosphates – Geochemical, Geobiological, and Materials Importance (eds Kohn M. L., Rakovan J. & Hughes J. M.), pp. 293335. Reviews in Mineralogy and Geochemistry 48
Stacey J. S. & Kramers J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.
Stern R. A. 1997. The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In Radiogenic Age and Isotopic Studies, Report 10, pp. 1–31. Geological Survey of Canada, Current Research 1997–F.
Stöffler D. 1971. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. Journal of Geophysical Research 76, 5541–51.
Sylvester P., Crowley J. & Schmitz M. 2013. U–Pb zircon age of Mistastin Lake crater, Labrador, Canada – implications for high-precision dating of small impact melt sheets and the end Eocene extinction. Mineralogical Magazine 77, 2295 (abstract).
Takano B. & Watanuki T. 1974. Geochemical implications of the lead content of barite from various origins. Geochemical Journal 8, 8795.
Taylor B. E. & Liou J. G. 1978. The low-temperature stability of andradite in C–O–H fluids. American Mineralogist 63, 378–93.
Tepper J. H. & Kuehner S. M. 1999. Complex zoning in apatite from the Idaho batholith: a record of magma mixing and intracrystalline trace element diffusion. American Mineralogist 84, 581–95.
Terada K., Anand M., Sokol A. K., Bischoff A. & Sano Y. 2007. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450, 849–52.
Thomson S. N., Gehrels G. E., Ruiz J. & Buchwaldt R. 2012. Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems 13, Q0AA21, 23 pp. doi: 10.1029/2011GC003928.
Timms N. E., Erickson T. M., Pearce M. A., Cavosie A. J., Schmieder M., Tohver E., Reddy S. M., Zanetti M. R., Nemchin A. A. & Wittmann A. 2017. A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Science Reviews 165, 185202.
Timms N. E., Reddy S. M., Healy D., Nemchin A. A., Grange M. L., Pidgeon R. T. & Hart R. 2012. Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteoritics & Planetary Science 47, 120–41.
Tohver E., Lana C., Cawood P. A., Fletcher I. R., Jourdan F., Sherlock S., Rasmussen B., Trindade R. I. F., Yokoyama E., Souza Filho C. R. & Marangoni Y. 2012. Geochronological constraints on the age of a Permo-Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochimica et Cosmochimica Acta 86, 214–27.
Watson E. B., Cherniak D. J., Hanchar J. M., Harrison T. M. & Wark D. A. 1997. The incorporation of Pb into zircon. Chemical Geology 141, 1931.
Wielicki M. M., Harrison T. M. & Schmitt A. K. 2012. Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth and Planetary Science Letters 321, 2031.
Wielicki M. M., Harrison T. M. & Stockli D. 2014. Dating terrestrial impact structures: U-Pb depth profiles and (U-Th)/He ages of zircon. Geophysical Research Letters 41, 4168–75.
Wittmann A., Kenkmann T., Schmitt R.-T. & Stöffler D. 2006. Shock-metamorphosed zircon in terrestrial impact craters. Meteoritics & Planetary Science 41, 433–54.
Wohlgemuth L., Bintakies E., Kück J., Conze R. & Harms U. 2004. Integrated deep drilling, coring, downhole logging, and data management in the Chicxulub Scientific Drilling Project (CSDP), Mexico. Meteoritics & Planetary Science 39, 791–7.
Xiao L., Zhao J. W., Liu H. S., Xiao Z. Y., Morgan J. V., Gulick S. P. S., Kring D. A., Claeys Ph., Riller U., Chenot E., Christeson G., Cockell C., Coolen M. J. L., Ferrière L., Gebhardt C., Goto K., Jones H., Lofi J., Lowery C., Mellett C., Ocampo-Torres R., Perez-Cruz L., Pickersgill A., Poelchau M., Rae A., Rasmussen C., Rebolledo-Vieyra M., Sato H., Smit J., Tikoo-Schantz S., Tomioka N., Urrutia-Fucugauchi J., Whalen M., Wittmann, Yamaguchi K. E. & Zylberman W. 2017. Ages and geochemistry of the basement granites of the Chicxulub impact crater: implications for peak ring formation. 48th Lunar and Planetary Science Conference (The Woodlands, TX, USA, 20–24 March 2017), abstract no. 1311. Houston, TX: Lunar and Planetary Institute.
Zürcher L. & Kring D. A. 2004. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteoritics & Planetary Science 39, 1199–221.
Zurcher L., Lounejeva-Baturina E. & Kring D. A. 2005. Preliminary analysis of relative abundances of hydrothermal alteration products in the C1-N10, Y6-N19, and Yax-1_863. 51 impact melt samples, Chicxulub Structure, Mexico. 36th Lunar and Planetary Science Conference, abstract no. 1983. Houston, TX: Lunar and Planetary Institute.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary materials

Schmieder supplementary material
Schmieder supplementary material 1

 Word (10.1 MB)
10.1 MB

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 428 *
Loading metrics...

* Views captured on Cambridge Core between 2nd May 2017 - 16th December 2017. This data will be updated every 24 hours.