Skip to main content
    • Aa
    • Aa

U–Th–Pb systematics in zircon and apatite from the Chicxulub impact crater, Yucatán, Mexico

  • MARTIN SCHMIEDER (a1) (a2), BARRY J. SHAULIS (a1) (a2), THOMAS J. LAPEN (a3) and DAVID A. KRING (a1) (a2)

This work presents a systematic study of zircon and apatite in melt-bearing impactites from the annular trough of the ~180 km and ~66.04 Ma Chicxulub impact crater, Yucatán, Mexico, using in situ laser ablation – inductively coupled plasma mass spectrometry, in which the petrologic context of the analysed minerals was assessed. Geochronologic U–Pb results for variably shocked zircon from the Yaxcopoil-1 core, including monocrystalline grains and neocrystallised granular aggregates, yielded a discordant array of ages representing the Early Palaeozoic age of the crystalline–metamorphic Maya block in the crater basement and the timing of the Chicxulub impact, respectively, and provide evidence for impact-induced resetting of the U–Pb system. Zircon and fluor-chlorapatite from the Yaxcopoil-1 core, and fluorapatite in clasts of impact melt from the Yucatán-6 core have low 206Pb/204Pb, suggesting the presence of detectable common Pb. The Chicxulub impactites were altered in an initially hot hydrothermal system that lasted up to ~2 Myr; locally, Pb-rich sulphides precipitated. Hydrothermal conditions did not reset the U–Th–Pb systematics of relict zircon, however, due to elevated closure temperatures for Pb diffusion at the fast cooling rates associated with the crater locations of the Yucatán-6 and Yaxcopoil-1 boreholes. Thus, the zircon preserves pre-impact and impact-related ages, rather than those of the hydrothermal system. In contrast, no useful geochronologic information was obtained from relict apatite, because common Pb in these grains overwhelmed radiometrically derived isotope ratios.

Corresponding author
Author for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

O. Abramov & D. A. Kring 2007. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteoritics & Planetary Science 42, 93112.

O. Abramov , D. A. Kring & S. J. Mojzsis 2013. The impact environment of the Hadean Earth. Chemie der Erde – Geochemistry 73, 227–48.

L. W. Alvarez , W. Alvarez , F. Asaro & H. V. Michel 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–108.

D. E. Ames , I. M. Kjarsgaard , K. O. Pope , B. Dressler & M. Pilkington 2004. Secondary alteration of the impactite and mineralization in the basal Tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science 39, 1145–67.

D. E. Ames , D. H. Watkinson & R. R. Parrish 1998. Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26, 447–50.

L. P. Black , S. L. Kamo , C. M. Allen , J. N. Aleinikoff , D. W. Davis , R. J. Korsch & C. Foudoulis 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.

B. F. Bohor , W. J. Betterton & T. E. Krogh 1993. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters 119, 419–24.

J. W. Boyce & K. V. Hodges 2005. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: insights regarding the impact of recoil redistribution of radiogenic 4He on (U–Th)/He thermochronology. Chemical Geology 219, 261–74.

A. J. Cavosie , T. M. Erickson & N. E. Timms 2015. Nanoscale records of ancient shock deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology 43, 315–18.

A. J. Cavosie , N. E. Timms , T. M. Erickson , J. J. Hagerty & F. Hörz 2016. Transformations to granular zircon revealed: twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA). Geology 44, 703–6.

Z. Chang , J. D. Vervoort , W. C. McClelland & C. Knaack 2006. U–Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems 7, Q05009. doi: 10.1029/2005GC001100.

D. J. Cherniak & E. B. Watson 2001. Pb diffusion in zircon. Chemical Geology 172, 524.

D. M. Chew , J. A. Petrus & B. S. Kamber , 2014. U-Pb La-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363, 185–99.

Ph. Claeys , S. Heuschkel , E. Lounejeva-Baturina , G. Sanchez-Rubio & D. Stöffler 2003. The suevite of drill hole Yucatán 6 in the Chicxulub impact crater. Meteoritics & Planetary Science 38, 1299–317.

W. Compston , I. S. Williams , J. L. Kirschvink , Z. Zichao & M. Guogan 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.

T. J. Dempster , M. Jolivet , M. N. Tubrett , & C. J. R. Braithwaite 2003. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology 145, 568–77.

A. Deutsch & U. Schärer 1994. Dating terrestrial impact events. Meteoritics 29, 301–22.

M. H. Dodson 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259–74.

B. O. Dressler , V. L. Sharpton , C. S. Schwandt & D. Ames 2004. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: petrography, geochemistry, and depositional environment. Meteoritics & Planetary Science 39, 857–78.

A. El Goresy 1965. Baddeleyite and its significance in impact glasses. Journal of Geophysical Research, 70, 3453–6.

R. Ganapathy 1980. A major meteorite impact on the Earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209, 921–3.

T. Geisler , R. T. Pidgeon , W. Van Bronswijk & R. Kurtz 2002. Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chemical Geology 191, 141–54.

T. Geisler , A. A. Rashwan , M. K. W. Rahn , U. Poller , H. Zwingmann , R. T. Pidgeon , H. Schleicher & F. Tomaschek 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine 67, 485508.

J. D. Gleason , G. E. Gehrels , W. R. Dickinson , P. J. Patchett & D. A. Kring 2007. Laurentian sources for detrital zircon grains in turbidite and deltaic sandstones of the Pennsylvanian Haymond Formation, Marathon assemblage, west Texas, USA. Journal of Sedimentary Research 77, 888900.

R. A. F. Grieve & V. L. Masaitis 1994. The economic potential of terrestrial impact craters. International Geology Review 36, 105–51.

E. M. Griffith & A. Paytan 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–35.

R. J. Hart , M. A. Andreoli , M. Tredoux , D. Moser , L. D. Ashwal , E. A. Eide , S. J. Webb & D. Brandt 1997. Late Jurassic age for the Morokweng impact structure, southern Africa. Earth and Planetary Science Letters, 147, 2535.

A. R. Hildebrand , G. T. Penfield , D. A. Kring , M. Pilkington , A. Camargo-Zanoguera , S. B. Jacobsen & W. V. Boynton 1991. Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–71.

T. R. Ireland & I. S. Williams 2003. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry 53, 215–41.

G. A. Izett 1991. Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez Impact Extinction Hypothesis. Journal of Geophysical Research: Planets 96, 20, 879905.

S. E. Jackson , N. J. Pearson , W. L. Griffin & E. A. Belousova 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.

A. H. Jaffey , K. F. Flynn , L. E. Glendenin , W. C. Bentley & A. M. Essling 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.

K. H. Joy , A. Nemchin , M. Grange , T. J. Lapen , A. H. Peslier , D. K. Ross , M. E. Zolensky & D. A. Kring 2014. Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449. Geochimica et Cosmochimica Acta 144, 299325.

E. Kalleson , F. Corfu & H. Dypvik 2009 U–Pb systematics of zircon and titanite from the Gardnos impact structure, Norway: evidence for impact at 546Ma? Geochimica et Cosmochimica Acta 73, 3077–92.

S. L. Kamo , C. Lana & J. V. Morgan 2011. U–Pb ages of shocked zircon grains link distal K–Pg boundary sites in Spain and Italy with the Chicxulub impact. Earth and Planetary Science Letters 310, 401–8.

A. J. R. Kent 2008. Lead isotope homogeneity of NIST SRM 610 and 612 glass reference materials: constraints from Laser Ablation Multicollector ICP-MS (LA-MC-ICP-MS) Analysis. Geostandards and Geoanalytical Research 32, 129–47.

J. D. Keppie , J. Dostal , M. Norman , J. Urrutia-Fucugauchi & M. Grajales-Nishimura 2011. Study of melt and a clast of 546 Ma magmatic arc rocks in the 65 Ma Chicxulub bolide breccia, northern Maya block, Mexico: western limit of Ediacaran arc peripheral to northern Gondwana. International Geology Review 53, 1180–93.

C. Koeberl , R. A. Armstrong & W. U. Reimold 1997. Morokweng, South Africa: a large impact structure of Jurassic-Cretaceous boundary age. Geology 25, 731–4.

D. A. Kring 1995. The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research 100 (E8), 16,979–86.

D. A. Kring 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (~24 km) and Chicxulub (~180 km) impact craters. Chemie der Erde (Geochemistry) 65, 146.

D. A. Kring 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255, 421.

D. A. Kring & W. V. Boynton 1991. Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochimica et Cosmochimica Acta 55, 1737–42.

D. A. Kring & W. V. Boynton 1992. Petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature 358, 141–4.

D. A. Kring , F. Hörz , L. Zürcher & J. Urrutia-Fucugauchi 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics & Planetary Science 39, 879–97.

T. E. Krogh 1982. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.

T. E. Krogh , S. L. Kamo & B. F. Bohor 1993. Fingerprinting the K/T impact site and determining the time of impact by U–Pb dating of single shocked zircons from distal ejecta. Earth and Planetary Science Letters 119, 425–9.

T. E. Krogh , S. L. Kamo , V. L. Sharpton , L. E. Marín & A. R. Hildebrand 1993. U–Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366, 731–4.

T. E. Krogh , R. H. McNutt & G. L. Davis 1982. Two high precision U-Pb zircon ages for the Sudbury Nickel Irruptive. Canadian Journal of Earth Sciences 19, 723–8.

F. T. Kyte , Z. Zhou & J. T. Wasson 1980. Siderophile-enriched sediments from the Cretaceous-Tertiary boundary. Nature 288, 651–6.

J. K. W. Lee , I. S. Williams & D. J. Ellis 1997. Pb, U and Th diffusion in natural zircon. Nature 390, 159–62.

E. Lopez Ramos 1975. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds A. E. M. Nairn & F. G. Stehli ), pp. 257–82. New York: Springer.

I. Mänttäri & M. Koivisto 2001. Ion microprobe uranium–lead dating of zircons from the Lappajärvi impact crater, western Finland. Meteoritics & Planetary Science 36, 1087–95.

S. Marchi , W. F. Bottke , L. T. Elkins-Tanton , M. Bierhaus , K. Wünnemann , A. Morbidelli & D. A. Kring 2014. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511, 578–82.

J. M. Mattinson 2005. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.

S. I. Mayr , A. Wittmann , H. Burkhardt , Yu. Popov , R. Romushkevich , I. Bayuk , P. Heidinger & H. Wilhelm 2008 b. Integrated interpretation of physical properties of rocks of the borehole Yaxcopoil-1 (Chicxulub impact structure). Journal of Geophysical Research: Solid Earth 113 (B7), B07201. doi: 10.1029/2007JB005420.

P. McCarville & L. J. Crossey 1996. Post-impact hydrothermal alteration of the Manson impact structure. In The Manson Impact Structure, Iowa; Anatomy of an Impact Crater (eds C. Koeberl & R. R. Anderson ), pp. 347–76. Geological Society of America Special Paper 302.

J. V. Morgan , S. P. S. Gulick , T. Bralower , E. Chenot , G. Christeson , Ph. Claeys , C. Cockell , G. S. Collins , M. J. L. Coolen , L. Ferrière , C. Gebhardt , K. Goto , H. Jones , D. A. Kring , E. Le Ber , J. Lofi , X. Long , C. Lowery , C. Mellett , R. Ocampo-Torres , G. R. Osinski , L. Perez-Cruz , A. Pickersgill , M. Poelchau , A. Rae , C. Rasmussen , M. Rebolledo-Vieyra , U. Riller , H. Sato , D. R. Schmitt , J. Smit , S. Tikoo , N. Tomioka , J. Urrutia-Fucugauchi , M. Whalen , A. Wittmann , K. E. Yamaguchi & W. Zylberman 2016. The formation of peak rings in large impact craters. Science 354, 878–82.

A. J. Naldrett 2003. From impact to riches: evolution of geological understanding as seen at Sudbury, Canada. GSA Today, February, 49.

M. V. Naumov 2005. Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 5, 165–84.

A. Nédélec , J. L. Paquette , E. Yokoyama , R. I. Trindade , T. Aigouy & D. Baratoux 2013. In situ U/Pb dating of impact-produced zircons from the Vargeão Dome (Southern Brazil). Meteoritics & Planetary Science 48, 420–31.

M. J. Nelson , H. E. Newsom , M. N. Spilde & T. Salge 2012. Petrographic investigation of melt and matrix relationships in Chicxulub crater Yaxcopoil-1 brecciated melt rock and melt rock-bearing suevite (846–885m, units 4 and 5). Geochimica et Cosmochimica Acta 86, 120.

A. A. Nemchin , R. T. Pidgeon , D. Healy , M. L. Grange , M. J. Whitehouse & J. Vaughan 2009. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteoritics & Planetary Science 44, 1717–34.

P. I. K. Onorato , D. R. Uhlmann & C. H. Simonds 1978. The thermal history of the Manicouagan impact melt sheet, Quebec. Journal of Geophysical Research 83 (B6), 2789–98.

F. Pirajno , P. Hawke , A. Y. Glikson , P. W. Haines & T. Uysal 2003. Shoemaker impact structure, Western Australia. Australian Journal of Earth Sciences 50, 775–96.

Yu. Popov , R. Romushkevich , I. Bayuk , D. Korobkov , S. Mayr , H. Burkhardt & H. Wilhelm 2004. Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater. Meteoritics & Planetary Science 39, 799812.

W. U. Reimold , C. Koeberl , R. L. Gibson & B. O. Dressler 2005. Economic mineral deposits in impact structures: a review. In Impact Tectonics (eds C. Koeberl & H. Henkel ), pp. 479552.Berlin, Heidelberg: Springer.

P. R. Renne , A. L. Deino , F. J. Hilgen , K. F. Kuiper , D. F. Mark , W. S. Mitchell , L. E. Morgan , R. Mundil & J. Smit 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–7.

J. A. Salisbury , A. G. Tomkins & B. F. Schaefer 2008. New insights into the size and timing of the Lawn Hill impact structure: relationship to the Century Zn–Pb deposit. Australian Journal of Earth Sciences 55, 587603.

U. Schaltegger , A. K. Schmitt & M. S. A. Horstwood 2015. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chemical Geology 402, 89110.

U. Schärer & A. Deutsch 1990. Isotope systematics and shock-wave metamorphism: II. U-Pb and Rb-Sr in naturally shocked rocks; the Haughton Impact Structure, Canada. Geochimica et Cosmochimica Acta 54, 3435–47.

M. Schmieder & F. Jourdan 2013. The Lappajärvi impact structure (Finland): age, duration of crater cooling, and implications for early life. Geochimica et Cosmochimica Acta 112, 321–39.

M. Schmieder , E. Tohver , F. Jourdan , S. W. Denyszyn & P. W. Haines 2015. Zircons from the Acraman impact melt rock (South Australia): shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochimica et Cosmochimica Acta 161, 71100.

P. Schulte , L. Alegret , I. Arenillas , J. A. Arz , P. J. Barton , P. R. Bown , T. J. Bralower , G. L. Christeson , Ph. Claeys , C. S. Cockell , G. S. Collins , A. Deutsch , T. J. Goldin , K. Goto , J. M. Grajales-Nishimura , R. A. F. Grieve , S. P. S. Gulick , K. R. Johnson , W. Kiessling , C. Koeberl , D. A. Kring , K. G. MacLeod , T. Matsui , H. J. Melosh , A. Montanari , J. V. Morgan , C. R. Neal , D. J. Nichols , R. D. Norris , E. Pierazzo , G. Ravizza , M. Rebolledo-Vieyra , W.-U. Reimold , E. Robin , T. Salge , R. P. Speijer , A. R. Sweet , J. Urrutia-Fucugauchi , V. Vajda , M. T. Whalen & P. S. Willumsen 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–18.

V. L. Sharpton , G. B. Dalrymple , L. E. Marín , G. Ryder , B. C. Schuraytz & J. Urrutia-Fucugauchi 1992. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature 359, 819–21.

B. J. Shaulis , T. J. Lapen , J. F. Casey & D. R. Reid 2012. Timing and rates of flysch sedimentation in the Stanley Group, Ouachita Mountains, Oklahoma and Arkansas, USA: constraints from U-Pb zircon ages of subaqueous ash-flow tuffs. Journal of Sedimentary Research 82, 833–40.

B. J. Shaulis , T. J. Lapen & A. Toms 2010. Signal linearity of an extended range pulse counting detector: applications to accurate and precise U–Pb dating of zircon by laser ablation quadrupole ICP-MS. Geochemistry, Geophysics, Geosystems 11, Q0AA11. doi: 10.1029/2010GC003198.

H. Sigurdsson , P. Bonté , L. Turpin , M. Chaussidon , N. Metrich , M. Steinberg , P. Pradel & S. d'Hondt 1991. Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353, 839–42.

A. C. Singleton , G. R. Osinski & S. R. Shieh 2015. Microscopic effects of shock metamorphism in zircons from the Haughton impact structure, Canada. In Large Meteorite Impacts and Planetary Evolution V (eds G. R. Osinski & D. A. Kring ), pp. 135–48. Geological Society of America Special Paper 518.

J. Sláma , J. Košler , D. J. Condon , J. L. Crowley , A. Gerdes , J. M. Hanchar , M. S. A. Horstwood , G. A. Morris , L. Nasdala , N. Norberg , U. Schaltegger , B. Schoene , M. N. Tubrett & M. J. Whitehouse 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.

J. Smit 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences 27, 75113.

J. Smit & J. Hertogen 1980. An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285, 198200.

J. S. Stacey & J. D. Kramers 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.

D. Stöffler 1971. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. Journal of Geophysical Research 76, 5541–51.

B. Takano & T. Watanuki 1974. Geochemical implications of the lead content of barite from various origins. Geochemical Journal 8, 8795.

J. H. Tepper & S. M. Kuehner 1999. Complex zoning in apatite from the Idaho batholith: a record of magma mixing and intracrystalline trace element diffusion. American Mineralogist 84, 581–95.

K. Terada , M. Anand , A. K. Sokol , A. Bischoff & Y. Sano 2007. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450, 849–52.

S. N. Thomson , G. E. Gehrels , J. Ruiz & R. Buchwaldt 2012. Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems 13, Q0AA21, 23 pp. doi: 10.1029/2011GC003928.

N. E. Timms , S. M. Reddy , D. Healy , A. A. Nemchin , M. L. Grange , R. T. Pidgeon & R. Hart 2012. Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteoritics & Planetary Science 47, 120–41.

E. Tohver , C. Lana , P. A. Cawood , I. R. Fletcher , F. Jourdan , S. Sherlock , B. Rasmussen , R. I. F. Trindade , E. Yokoyama , C. R. Souza Filho & Y. Marangoni 2012. Geochronological constraints on the age of a Permo-Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochimica et Cosmochimica Acta 86, 214–27.

E. B. Watson , D. J. Cherniak , J. M. Hanchar , T. M. Harrison & D. A. Wark 1997. The incorporation of Pb into zircon. Chemical Geology 141, 1931.

M. M. Wielicki , T. M. Harrison & D. Stockli 2014. Dating terrestrial impact structures: U-Pb depth profiles and (U-Th)/He ages of zircon. Geophysical Research Letters 41, 4168–75.

A. Wittmann , T. Kenkmann , R.-T. Schmitt & D. Stöffler 2006. Shock-metamorphosed zircon in terrestrial impact craters. Meteoritics & Planetary Science 41, 433–54.

L. Wohlgemuth , E. Bintakies , J. Kück , R. Conze & U. Harms 2004. Integrated deep drilling, coring, downhole logging, and data management in the Chicxulub Scientific Drilling Project (CSDP), Mexico. Meteoritics & Planetary Science 39, 791–7.

L. Zürcher & D. A. Kring 2004. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteoritics & Planetary Science 39, 1199–221.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Schmieder supplementary material
Schmieder supplementary material 1

 Word (10.1 MB)
10.1 MB


Full text views

Total number of HTML views: 2
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 278 *
Loading metrics...

* Views captured on Cambridge Core between 2nd May 2017 - 21st August 2017. This data will be updated every 24 hours.