Skip to main content Accessibility help
×
×
Home

COMPARISON THEOREMS ON THE OSCILLATION AND ASYMPTOTIC BEHAVIOUR OF HIGHER-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

  • BAŞAK KARPUZ (a1), ÖZKAN ÖCALAN (a1) and SERMIN ÖZTÜRK (a1)
Abstract

In this work, oscillatory and asymptotic behaviours of all solutions of higher-order neutral differential equations are compared with first-order delay differential equations, depending on two different ranges of the coefficient associated with the neutral part. Some simple examples are given to compare our results with the existing results in the literature and to illustrate the significance and applicability of our new results. Our results generalise, improve and correct some of the existing results in the literature.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      COMPARISON THEOREMS ON THE OSCILLATION AND ASYMPTOTIC BEHAVIOUR OF HIGHER-ORDER NEUTRAL DIFFERENTIAL EQUATIONS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      COMPARISON THEOREMS ON THE OSCILLATION AND ASYMPTOTIC BEHAVIOUR OF HIGHER-ORDER NEUTRAL DIFFERENTIAL EQUATIONS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      COMPARISON THEOREMS ON THE OSCILLATION AND ASYMPTOTIC BEHAVIOUR OF HIGHER-ORDER NEUTRAL DIFFERENTIAL EQUATIONS
      Available formats
      ×
Copyright
References
Hide All
1.Agarwal, R. P., Grace, S. R. and O'Regan, D., Oscillation theory for difference and functional differential equations (Kluwer Academic, Dordrecht, 2000).
2.Candan, T. and Dahiya, R. S., Oscillatory and asymptotic behavior of odd order neutral differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (6) (2007), 767774.
3.Chen, M. and Xu, Z., Interval oscillation of second-order Emden–Fowler neutral delay differential equations, Electron. J. Diff. Eq. (58) (2007), 9.
4.Das, P., Oscillation in odd-order neutral delay differential equations, Proc. Indian Acad. Sci. Math. Sci. 105 (2) (1995), 219225.
5.Das, P., Mishra, B. B. and Dash, C. R., Oscillation theorems for neutral delay differential equations of odd order, Bull. Inst. Math. Acad. Sin. 1 (4) (2007) 557568.
6.Džurina, J., Oscillation theorems for neutral differential equations of higher order, Czechoslovak Math. J. 54 (129) (2004), 185195.
7.Erbe, L. H., Kong, Q. and Zhang, B. G., Oscillation theory for functional-differential equations (Marcel Dekker, New York, 1995).
8.Gopalsamy, K., Lalli, B. S. and Zhang, B. G., Oscillation of odd order neutral differential equations, Czechoslovak Math. J. 42 (2) (1992), 313323.
9.Győri, I. and Ladas, G., Oscillation theory of delay differential equations: With applications (Oxford University Press, New York, 1991).
10.Hale, J. K., Theory of functional differential equations (Springer, New York, 1977).
11.Ladas, G., Laskhmikantham, V. and Papadakis, J. S., Oscillations of higher-order retarded differential equations generated by the retarded argument, in Delay and functional differential equations and their applications (Schmitt, K., Editor) (Academic, New York, 1972), 219231.
12.Ladde, G. S., Lakshmikantham, V. and Zhang, B. G., Oscillation theory of differential equations with deviating arguments (Marcel Dekker, New York, 1987).
13.Mallik, S. C. and Arora, S., Mathematical analysis (New Age International, New Delhi, 2001).
14.Parhi, N. and Rath, R. N., Oscillation criteria for forced first order neutral differential equations with variable coefficients, J. Math. Anal. Appl. 256 (2) (2001), 525541.
15.Parhi, N. and Rath, R. N., On oscillation of solutions of forced nonlinear neutral differential equations of higher order, Czechoslovak Math. J. 53 (128) (2003), 805825.
16.Parhi, N. and Rath, R. N., On oscillation of solutions of forced nonlinear neutral differential equations of higher order II, Ann. Polon. Math. 81 (2), (2003), 101110.
17.Rath, R. N., Oscillatory and asymptotic behaviour of solutions of higher order neutral equations, Bull. Inst. Math. Acad. Sinica 30 (3) (2002), 219228.
18.Rath, R. N., Padhy, L. N. and Misra, N., Oscillation of solutions of non-linear neutral delay differential equations of higher order for p(t) = ±1, Arch. Math. (Brno) 40 (4) (2004), 359366.
19.Şahiner, Y. and Zafer, A., Bounded oscillation of nonlinear neutral differential equations of neutral type, Czechoslovak Math. J. 51 (126) (2001) 185195.
20.Shen, J. H., New oscillation criteria for odd order neutral equations, J. Math. Anal. Appl. 201 (2) (1996), 387395.
21.Shen, J. H. and Tang, X. H., New oscillation criteria for linear delay differential equations, Comput. Math. Appl. 36 (6) (1998), 5361.
22.Tang, X. H., Oscillation for first order superlinear delay differential equations, J. Lond. Math. Soc. 65 (2), no. 1 (2002), 115122.
23.Wang, L. W., Oscillation of first-order nonlinear neutral functional-differential equations, Acta Math. Appl. Sinica 14 (3) (1991), 348359.
24.Wei, J. J., Oscillation of first-order sublinear differential equations with deviating arguments, Dongbei Shida Xuebao 3 (1991), 59.
25.Xu, Z. and Liu, X., Philos-type oscillation criteria for Emden-Fowler neutral delay differential equations, J. Comput. Appl. Math. 206 (2) (2007), 11161126.
26.Yang, Q., Yang, L. and Zhu, S., Interval criteria for oscillation of second-order nonlinear neutral differential equations, Comput. Math. Appl. 46 (5–6) (2003), 903918.
27.Zhang, B. G. and Li, W. T., On the oscillation of odd order neutral differential equations. Fasc. Math. 29 (1999), 167183.
28.Zhang, Q. and Yan, J., Oscillation behavior of even order neutral differential equations with variable coefficients, Appl. Math. Lett. 19 (11) (2006), 12021206.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed