Skip to main content



In this paper, we introduce the notion of complex product structures on hom-Lie algebras and show that a hom-Lie algebra carrying a complex product structure is a double hom-Lie algebra and it is also endowed with a hom-left symmetric product. Moreover, we show that a complex product structure on a hom-Lie algebra determines uniquely a left symmetric product such that the complex and the product structures are invariant with respect to it. Finally, we introduce the notion of hyper-para-Kähler hom-Lie algebras and we present an example of hyper-para-Kähler hom-Lie algebras.

Hide All
1. Ammar, F., Ejbehi, Z. and Makhlouf, A., Cohomology and deformations of hom-algebras, J. Lie Theory 21 (4) (2011), 813836.
2. Andrada, A., Complex product structures on 6-dimensional nilpotent Lie algebras, Forum Math. 20 (2008), 285315.
3. Andrada, A. and Salamon, S., Complex product structures on Lie algebras, Forum Math. 17 (2005), 261295.
4. Benayadi, S. and Boucetta, M., On para-Kähler and hyper-para-Kähler Lie algebras, J. Algebra 436 (2015), 61101.
5. Caldarella, A. V., On paraquaternionic submersions between paraquaternionic Kähler manifolds, Acta Appl. Math. 112 (2010), 114.
6. Campoamor-Stursberg, R., Cardoso, I. E. and Ovando, G. P., Extending invariant complex structures, Int. J. Math. 26 (2015), 125.
7. Davidov, J., Grantcharov, G., Mushkarov, O. and Yotov, M., Compact complex surfaces with geometric structures related to split quaternions, Nucl. Phys. 865 (2012), 330352.
8. Hartwig, J., Larsson, D. and Silvestrov, S., Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314361.
9. Laurent-Gengoux, C., Makhlouf, A. and Teles, J., Universal algebra of a hom-Lie algebra and group-like elements, J. Pure Appl. Algebra 222 (5) (2018), 11391163.
10. Larsson, D. and Silvestrov, S., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321344.
11. Li, X., Hou, D. and Bai, C., Rota-Baxter operators on pre-Lie algebras, J. Nonlinear Math. Phys. 14 (2007), 269289.
12. Majid, S., Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations, Pacific J. Math. 141 (1990), 311332.
13. Peyghan, E. and Nourmohammadifar, L., Para-Kähler hom-Lie algebras, J. Algebra Appl. To appear.
14. Peyghan, E. and Nourmohammadifar, L., Complex and Kähler structures on hom-Lie algebras, arXiv:1610.07775.
15. Sheng, Y., Representations of hom-Lie algebras, Algebras Represent. Theor. 15 (2012), 10811098.
16. Sheng, Y. and Bai, C., A new approach to hom-Lie bialgebras, J. Algebra 399 (2014), 232250.
17. Sheng, Y. and Chen, D., hom-Lie 2-algebras, J. Algebra 376 (2013), 174195.
18. Yau, D., hom-algebras and homology, J. Lie Theory 19 (2009), 409421.
19. Zhang, Y., Bai, C. and Guo, L., The category and operad of matching dialgebras, J. Algebra 21 (2013), 851865.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 134 *
Loading metrics...

* Views captured on Cambridge Core between 12th March 2018 - 19th June 2018. This data will be updated every 24 hours.